Journal of Plant Research

, Volume 126, Issue 1, pp 33–40 | Cite as

The role of a mixed mating system in the reproduction of a Mediterranean subshrub (Fumana hispidula, Cistaceae)

  • Elena CarrióEmail author
  • Jaime Güemes
Regular Paper


Knowledge about mixed mating systems can improve our understanding of the evolutionary dynamics of reproductive systems. Here we report a study of the pollination system (floral and reproductive biology, pollen limitation and stigmatic pollen load, floral visitors and inbreeding depression) of Fumana hispidula, a Mediterranean subshrub belonging to a species group with a strong selfing tendency. Autonomous self-pollination, hand self- and hand cross-pollination, open pollination and controls yielded fruits (0.28, 0.65, 0.68, 0.38, and 0.67, respectively); however, autonomous self-pollination resulted in the lowest fruit set. All individuals were fully self-compatible but we found great inter-individual variation in autonomous self-pollination ability, which was probably related to a variable expression of herkogamy degree. Inbreeding depression was low (0.040 for fruit set, 0.015 for seed set and −0.026 for seed mass). The pollen supplementation experiment did not reveal pollen limitation and pollinators were seen visiting the flowers during the observation periods. These results support the idea that F. hispidula has a mixed mating strategy, which represents a successful reproduction mode in their patchy habitats.


Autonomous self-pollination Herkogamy Inbreeding depression Outcrossing Pollinator limitation 



The authors wish to thank: R. Herreros and E. Barona for field assistance; S. Montagud and M.A. Marcos for insect identification; and F. Barraclough for reviewing the English version; two anonymous reviewers and the editor for their constructive comments on an earlier draft of this manuscript. This research was supported by the Spanish General Direction of Scientific and Technical Research (DGICYT) through the Project CGL 2006-07368/BOS and CGL 2008-02982-C03-CLI.


  1. Aragón CE, Escudero A (2008) Mating system of Helianthemum squamatum (Cistaceae), a gypsophile specialist of semi-arid Mediterranean environments. Bot Helv 118:129–137CrossRefGoogle Scholar
  2. Barrett SC (2002) The evolution of plant sexual diversity. Nat Rev Genet 3:274–284PubMedCrossRefGoogle Scholar
  3. Bosch J (1992) Floral biology and pollinators of three cooccurring Cistus species (Cistaceae). Bot J Linn Soc 109:39–55CrossRefGoogle Scholar
  4. Brandt U, Gottsberger G (1988) Flower phenology, pollinating insects and breeding systems in Cistus, Halimium and Tuberaria species in Portugal. Lagascalia 15:625–634Google Scholar
  5. Brys R, Jacquemyn H (2010) Floral display size and spatial distribution of potential mates affect pollen deposition and female reproductive success in distylous Pulmonaria officinalis (Boraginaceae). Plant Biol 12:597–603PubMedGoogle Scholar
  6. Busch JW, Herlihy CR, Gunn L, Werner WJ (2010) Mixed mating in a recently derived self-compatible population of Leavenworthia alabamica (Brassicaceae). Am J Bot 97:1005–1013PubMedCrossRefGoogle Scholar
  7. Carrió E, Herreros R, J Güemes (2004) Breeding system evolution in Mediterranean Cistaceae. In: Anonymous (eds) IXth IOPB meeting. Plant evolution in Mediterranean climate zones. International Association for Plant Taxonomy. Spain, Valencia, pp 154Google Scholar
  8. Carrió E, Herreros R, Bacchetta G, Güemes J (2008) Evidence of delayed selfing in Fumana juniperina (Cistaceae). Int J Plant Sci 169:761–767CrossRefGoogle Scholar
  9. Charlesworth D, Charlesworth B (1987) Inbreeding depression and its evolutionary consequences. Ann Review Ecol Syst 18:237–268CrossRefGoogle Scholar
  10. Chen XS, Marten-Rodríguez S, Li QJ, Fenster CB (2009) Potential autonomous selfing in Gesneria citrina (Gesneriaceae), a specialized hummingbird pollinated species with variable expression of herkogamy. J Integr Plant Biol 51:973–978PubMedCrossRefGoogle Scholar
  11. Cruden RW (1977) Pollen–ovule ratios: conservative indicator of breeding systems in flowering plants. Evolution 31:32–46CrossRefGoogle Scholar
  12. Goodwillie C, Kalisz S, Eckert CG (2005) The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence. Ann Rev Ecol Evol Syst 36:47–79CrossRefGoogle Scholar
  13. Gottlieb D, Holzman JP, Lubin Y, Bouskila A, Kelley ST, Harari AR (2009) Mate availability contributes to maintain the mixed-mating system in a scolytid beetle. J Evol Biol 22:1526–1534PubMedCrossRefGoogle Scholar
  14. Güemes J (1991) Revisión taxonómica del género Fumana (Dunal) Spach en la Península Ibérica e Islas Baleares. PhD dissertation. University of Valencia, ValenciaGoogle Scholar
  15. Güemes J, Boscaiu M (2001) The breeding system of Fumana ericifolia: first evidence of autogamy in woody Cistaceae. Nord J Bot 21:467–474CrossRefGoogle Scholar
  16. Güemes J, Molero J (1993) Cistaceae: Fumana. In: Castroviejo S, Aedo C, Cirujano S, Laínz M, Montserrat P, Morales R, Muñoz F, Navarro C, Paiva J, Soriano C (eds) Flora Iberica, vol 3. Real Jardín Botánico, Madrid, pp 422–436 Google Scholar
  17. Herrera J (1988) Pollination relationships in southern spanish Mediterranean shrublands. J Ecol 76:274–287CrossRefGoogle Scholar
  18. Herrera J (1992) Flower variation and breeding system in the Cistaceae. Plant Syst Evol 179:245–255CrossRefGoogle Scholar
  19. Husband BC, Schemske DW (1996) Evolution of the magnitud and timing of inbreeding depression in plants. Evolution 50:54–70CrossRefGoogle Scholar
  20. Jaimes I, Ramírez N (1999) Breeding systems in a secondary deciduous forest in Venezuela: the importance of life form, habitat, and pollination specificity. Plant Syst Evol 215:23–36CrossRefGoogle Scholar
  21. Jump AS, Peñuelas J, Rico L, Ramalio E, Estiarte M, Martínez-Izquierdo JA, Lloret F (2008) Simulated climate change provokes rapid genetic change in the Mediterranean shrub Fumana thymifolia. Global Change Biol 14:637–643CrossRefGoogle Scholar
  22. Jump AS, Rico L, Lloret F, Peñuelas J (2009) Microspatial population genetic structure of the Mediterranean shrub Fumana thymifolia. Plant Biol 11:152–160PubMedCrossRefGoogle Scholar
  23. Kearns CA, Inouye DW (1993) Techniques for pollination biologist. University Press of Colorado, NiwotGoogle Scholar
  24. Kephart SR, Brown E, Hall J (1999) Inbreeding depression and partial selfing: evolutionary implications of mixed-mating in a coastal endemic, Silene douglasii var. oraria (Caryophyllaceae). Heredity 82:543–554PubMedCrossRefGoogle Scholar
  25. Llorens L, M Pons, L Gil, H Boira H (2008) Seasonality of seed production and germination trends of Fumana ericoides (Cistaceae) in the west semiarid Mediterranean region. J Arid Environ 72:121–126Google Scholar
  26. Mabberley DJ (1997) The Plant-Book, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  27. Martin FW (1959) Staining and observing pollen tubes in the style by means of fluorescence. Stain Technol 34:125–128PubMedGoogle Scholar
  28. Martín M, Guinea E (1949) Jarales y jaras (Cistografía Hipánica). nica). Bol Inst For Invest Exp 49:1–228Google Scholar
  29. Molero J, Rovira AM (1987) Taxonomía del grupo “Fumana thymifolia” (Cistaceae). Candollea 42:501–531Google Scholar
  30. Oakley CG, Moriuchi KS, Winn AA (2007) The maintenance of outcrossing in predominantly selfing species: Ideas and evidence from cleistogamous species. Ann Rev Ecol Evol Syst 38:437–457CrossRefGoogle Scholar
  31. Ramos ME, Robles AB, Castro J (2006) Efficiency of endozoochorous seed dispersal in six dry-fruited species (Cistaceae): from seed ingestion to early seedling establishment. Plant Ecol 185:97–106CrossRefGoogle Scholar
  32. Rhode JM, Duffy JE (2004) Seed production from the mixed mating system of Chesapeake Bay (USA) eelgrass (Zostera marina; Zosteraceae). Am J Bot 91:192–197PubMedCrossRefGoogle Scholar
  33. Richards AJ (1997) Plant breeding systems. Chapman and Hall, CambridgeGoogle Scholar
  34. Rodríguez-Pérez J (2005) Breeding system, flower visitors and seedling survival of two endangered species of Helianthemum (Cistaceae). Ann Bot 95:1229–1236PubMedCrossRefGoogle Scholar
  35. Ruan CJ, Li H, Mopper S (2009) Kosteletzkya virginica displays mixed mating in response to the pollinator environment despite strong inbreeding depression. Plant Ecol 203:183–193CrossRefGoogle Scholar
  36. Ruiz-Zapata TR, Arroyo MTK (1978) Plant reproductive ecology of a secondary deciduos tropical forest in Venezuela. Biotropica 10:221–230CrossRefGoogle Scholar
  37. Schemske DW, Lande R (1985) The evolution of self-fertilization and inbreeding depression in Plants II. Empirical observations. Evolution 39:41–52CrossRefGoogle Scholar
  38. Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New YorkGoogle Scholar
  39. Talavera S, Gibbs PE, Herrera J (1993) Reproductive biology of Cistus ladanifer (Cistaceae). Plant Syst Evol 186:123–134CrossRefGoogle Scholar
  40. Talavera S, Bastida F, Ortiz PL, Arista M (2001) Pollinator attendance and reproductive success in Cistus libanotis L. (Cistaceae). Int J Plant Sci 162:343–352CrossRefGoogle Scholar
  41. Tébar FJ, Gil L, Llorens L (1997) Reproductive biology of Helianthemum appeninum (L.) Mill. and H. caput-felis Boiss. (Cistaceae) from Mallorca (Baleric Islands, Spain). Acta Bot Malacitana 22:53–63Google Scholar
  42. Torres E, Iriondo JM, Perez C (2002) Vulnerability and determinants of reproductive success in the narrow endemic Antirrhinum microphyllum (Scrophularilaceae). Am J Bot 89:1171–1179PubMedCrossRefGoogle Scholar
  43. Totland O, Schulte-Herbrüggen B (2003) Breeding system, insect flower visitation, and floral traits of two alpine Cerastium species in Norway. Arc Antarct Alp Res 35:242–247CrossRefGoogle Scholar
  44. Weber JJ, C Goodwillie C (2009) Evolution of the mating system in a partially self-incompatible species: reproductive assurance and pollen limitation in populations that differ in the timing of self-compatibility. Int J Plant Sci 170:885–893Google Scholar
  45. Wilson C, Voronin V, Touraev A, Vicente O, Heberle-Bors E (1997) A developmentally regulated MAP kinase activated by hydration in tobacco pollen. Plant Cell 9:2093–2100PubMedGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer 2012

Authors and Affiliations

  1. 1.Jardín Botánico de Valencia, Instituto Cavanilles de Biodiversidad y Biología EvolutivaUniversidad de ValenciaValenciaSpain

Personalised recommendations