Advertisement

Journal of Plant Research

, Volume 126, Issue 1, pp 17–32 | Cite as

Molecular phylogeny of Anaphalis (Asteraceae, Gnaphalieae) with biogeographic implications in the Northern Hemisphere

  • Ze-Long Nie
  • Vicki Funk
  • Hang Sun
  • Tao Deng
  • Ying Meng
  • Jun Wen
Regular Paper

Abstract

Anaphalis is the largest Asian genus in the tribe Gnaphalieae (Asteraceae) and has its greatest species diversity in the eastern Himalayas. The nuclear internal and external transcribed spacers were sequenced for Anaphalis species, with an emphasis on the eastern Himalayan taxa to examine the monophyly and construct the phylogenetic relationships of and within the genus. The results suggest that all species of Anaphalis are nested with Helichrysum, showing a close relationship with a Mediterranean–Asian group of Helichrysum. Although the monophyly of Anaphalis is only weakly supported, two clades within the genus are well recognized, each consisting of two subgroups. The inferred phylogenetic relationships within Anaphalis correspond to the shape of leaf base, rather than the morphology of the capitula and phyllaries that are usually used for species delimitation and classification in the genus. All four subgroups of Anaphalis are common and diversified in the eastern Himalayas with multiple dispersals out of this region. The sole North American species of Anaphalis is best hypothesized to be the result of long-distance dispersal or overland migration via Bering land bridge from Asia. Our analyses suggest that the extant distribution of Anaphalis has most likely resulted one radiation into the eastern Himalayas followed by repeated independent dispersals and/or radiations mostly into eastern Asia but also into the western Himalayas, North America, and southeast Asia.

Keywords

Anaphalis Asian–North American disjunction Asteraceae Eastern Himalayas Gnaphalieae Phylogeny 

Notes

Acknowledgments

This study was supported by grants from the Natural Science Foundation of China (NSFC 40930209 and 31061160184 to H. Sun), One Hundred Person Project of the Chinese Academy of Sciences (2011312D11022 to H. Sun), United Fund of the NSFC and Yunnan Natural Science Foundation (U1136601 to H. Sun), and the Chinese Academy of Sciences (KSCX2-EW-J-24 to Z.-L. Nie), and the John D. and Catherine T. MacArthur Foundation to J. Wen, R. Ree, and G. Mueller. Support for the senior author’s research visit at the Smithsonian was provided by a postdoctoral fellowship through the SI Fellowship program. Laboratory work was conducted in and partially supported by the Laboratory of Analytical Biology of the National Museum of Natural History, and Fieldwork in North America was supported by the Small Grants Program of the National Museum of Natural History, the Smithsonian Institution.

References

  1. Álvarez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Mol Phylogenet Evol 29:417–434PubMedCrossRefGoogle Scholar
  2. Anderberg AA (1991) Taxonomy and phylogeny of the tribe Gnaphalieae (Asteraceae). Opera Bot 104:1–195Google Scholar
  3. Axelrod DI, Al-Shehbaz I, Raven RH (1998) History of the modern flora of China. In: Zhang A-L, Wu S-G (eds) Floristic characteristics and diversity of East Asian plants—Proceedings of the First International Symposium on Floristic Characteristics and Diversity of East Asian Plants. China Higher Educ. Press, Beijing, pp 43–55Google Scholar
  4. Backer CA, Bakhuizen RC (1963) Flora of Java, vol II. P. Noordhoff, GroningenGoogle Scholar
  5. Baird KE, Funk VA, Wen J, Weeks A (2010) Molecular phylogenetic analysis of Leibnitzia Cass. (Asteraceae: Mutisieae: gerbera-complex), an Asian–North American disjunct genus. J Syst Evol 48:161–174CrossRefGoogle Scholar
  6. Baldwin BG, Markos S (1998) Phylogenetic utility of the external transcribed spacer (ETS) of 18S-26S rDNA: congruence of ETS and ITS trees of Calycadenia (Compositae). Mol Phylogenet Evol 10:449–463PubMedCrossRefGoogle Scholar
  7. Bayer RJ, Greber DG, Bagnall NH (2002) Phylogeny of Australian Gnaphalieae (Asteraceae) based on cloroplast and nuclear sequences, the trnL intron, trnL/trnF Intergenic spacer, matK, and ETS. Syst Bot 27:801–814Google Scholar
  8. Bayer MB, Breitweiser I, Ward J, Puttock CF (2007) Tribe Gnaphalieae. In: Kadereit JW, Jeffrey C (eds) The families and genera of flowering plants, flowering plants, Eudicots, Asterales, vol VIII. Springer, Berlin, pp 246–283Google Scholar
  9. Beauverd G (1913) La constante générique des Anaphalis DC. Bull Soc Bot Genève sér 2:146–147Google Scholar
  10. Bentham G, Hooker JD (1873) Genera Plantarum, vol 2. Lovell Reeve and Co., LondonGoogle Scholar
  11. Bergh NG, Linder HP (2009) Cape diversification and repeated out-of-southern-Africa dispersal in paper daisies (Asteraceae–Gnaphalieae). Mol Phylogenet Evol 51:5–18PubMedCrossRefGoogle Scholar
  12. Blöch C, Dickoré WB, Samuel R, Stuessy TF (2010) Molecular phylogeny of the edelweiss (Leontopodium, Asteraceae–Gnaphalieae). Edinburgh J Bot 67:235–264CrossRefGoogle Scholar
  13. Borissova (1999) Anaphalis. In: Shishkin BK (ed) Flora of the USSR, vol 25. Bishen Singh Mahendra Pal Singh and Koeltz Scientific Books, WashingtonGoogle Scholar
  14. Boufford DE, Van Dyck PP (1999) South-Central China. In: Mittermeier RA, Myers N, Mittermeier CG (eds) Hotspots: Earth’s biologically richest and most endangered terrestrial ecoregions. CEMEX, Mexico City, pp 338–351Google Scholar
  15. Chen F-H, Ling Y, Chen Y-L, Shi C, Wang W (1966) De genere Anaphalis DC. familiae Compositarum e Florae Sinicae. Acta Phytotax Sin 11:91–12Google Scholar
  16. Chen YS, Zhu SX, Bayer RA (2011) Gnaphalieae. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China, vol 20–21 (Asteraceae). Science Press (Beijing) and Missouri Botanical Garden Press, St. Louis, pp 774–818Google Scholar
  17. De Candolle A (1837) Prodromus systematis naturalis regni vegetabilis, vol VI. Treuttel and Wurtz, ParisGoogle Scholar
  18. Dewey JF, Shackleton RM, Chang C, Sun Y (1988) The tectonic evolution of Tibetan Plateau. Phil Trans R Soc Lond, Ser A 327:379–413CrossRefGoogle Scholar
  19. Drury DG (1970) A fresh approach to the classification of the genus Gnaphalium with particular reference to the species present in New Zealand (Inuleae–Compositae). New Zeal J Bot 9:222–248CrossRefGoogle Scholar
  20. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl Acids Res 32:1792–1797PubMedCrossRefGoogle Scholar
  21. Farris JS, Källersjö M, Kluge AG, Bult C (1994) Testing significance of incongruence. Cladistics 10:315–319CrossRefGoogle Scholar
  22. Ford KA, Ward JM, Smissen RD, Wagstaff SJ, Breitwieser I (2007) Phylogeny and biogeography of Craspedia (Asteraceae: Gnaphalieae) based on ITS, ETS and psbA-trnH sequence data. Taxon 56:783–794CrossRefGoogle Scholar
  23. Funk VA, Bayer RJ, Keeley S, Chan R, Watson L, Gemeinholzer B, Schilling E, Panero JL, Baldwin BG, Garcia-Jacas N, Susanna A, Jansen RK (2005) Everywhere but Antarctica: using a supertree to understand the diversity and distribution of the Compositae. Biol Skr 55:343–374Google Scholar
  24. Funk VA, Anderberg AA, Baldwin BG, Bayer RJ, Bonifacino JM, Breitwieser I, Brouillet L, Carbajal R, Chan R, Coutinho AXP, Crawford DJ (2009) Compositae meta-supertree: the next generation. In: Funk VA, Susanna A, Stuessy T, Bayer R (eds) Systematics, evolution and biogeography of the compositae. International Association for Plant Taxonomy (IAPT), Vienna, pp 747–777Google Scholar
  25. Galbany-Casals M, Garcia-Jacas N, Susanna A, Saez L, Benedi C (2004a) Phylogenetic relationships in the Mediterranean Helichrysum (Asteraceae, Gnaphalieae) based on nuclear rDNA ITS sequence data. Aust Syst Bot 17:241–253CrossRefGoogle Scholar
  26. Galbany-Casals M, Saez L, Benedi C (2004b) Taxonomy of Castroviejoa, a new genus of Gnaphalieae (Asteraceae), endemic to the Mediterranean Islands Corsica and Sardinia. Aust Syst Bot 17:581–591CrossRefGoogle Scholar
  27. Galbany-Casals M, Garcia-Jacas N, Sáez L, Benedí C, Susanna A (2009a) Phylogeny, biogeography, and character evolution in Mediterranean, Asiatic, and Macaronesian Helichrysum (Asteraceae, Gnaphalieae) inferred from nuclear phylogenetic analyses. Int J Plant Sci 170:365–380CrossRefGoogle Scholar
  28. Galbany-Casals M, Susanna A, Briones JM (2009b) Low base numbers and dysploidy in annual Helichrysum Mill. (Asteraceae: Gnaphalieae). Acta Biol Cracov Bot 51:107–114Google Scholar
  29. Galbany-Casals M, Andres-Sanchez S, Garcia-Jacas N, Susanna A, Rico E, Martinez-Ortega MM (2010) How many of Cassini anagrams should there be? Molecular systematics and phylogenetic relationships in the Filago group (Asteraceae, Gnaphalieae), with special focus on the genus Filago. Taxon 59:1671–1689Google Scholar
  30. Galbany-Casals M, Blanco-Moreno JM, Garcia-Jacas N, Breitwieser I, Smissen RD (2011) Genetic variation in Mediterranean Helichrysum italicum (Asteraceae; Gnaphalieae): do disjunct populations of subsp. microphyllum have a common origin? Plant Biol 13:678–687PubMedCrossRefGoogle Scholar
  31. Georgiadou E, Rechinger KH (1980) Anaphalis. In: Rechinger KH (ed) Flora Iranica Compositae IV—Inuleae, vol 145. Akademischer Drucks- und Verlagsgesellschaft, GrazGoogle Scholar
  32. Glenny D (1997) A revision of the genus Anaphalioides (Asteraceae: Gnaphalieae). New Zeal J Bot 35:451–477CrossRefGoogle Scholar
  33. Glenny D, Wagstaff S (1997) Evolution and biogeography of New Zealand Anaphalis (Asteraceae: Gnaphalieae) inferred from rDNA sequences. New Zeal J Bot 35:441–449CrossRefGoogle Scholar
  34. Grierson AJC (1972) A new species of Anaphalis (Compositae) from Mexico. Notes Roy Bot Gard Edinburgh 31:389–392Google Scholar
  35. Grubov V (1998) Conspectus generis Anaphalis DC. (Compositae) Asiae centralis (in Russian). Novitates Systematicae Plantarum Vascularium 31:245–251Google Scholar
  36. Hilliard OM, Burtt BL (1981) Some generic concepts in Compositae—Gnaphaliinae. Bot J Linn Soc 82:181–232CrossRefGoogle Scholar
  37. Hooker JD (1882) Flora of British India, vol 3. L. Reeve & Co., LondonGoogle Scholar
  38. Huelsenbeck JP, Ronquist R (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755PubMedCrossRefGoogle Scholar
  39. Ito M, Watanabe K, Kita Y, Kawahara T, Crawford DJ, Yahara T (2000) Phylogeny and phytogeography of Eupatorium (Eupatorieae, Asteraceae): insights from sequence data of the nrDNA ITS regions and cpDNA RFLP. J Plant Res 113:79–89CrossRefGoogle Scholar
  40. Jeanmonod D (1996) Xanthium subg. Xanthium et Helichrysum italicum, deux cas taxonomiques ardus. Candollea 53:435–457Google Scholar
  41. Kitamura S (1937) Compositae Japonicae. Pars Prima Mem Coll Sci Kyoto Imp Univ Ser B Biol 13:1–421 Google Scholar
  42. Kubitzki K, Krutzsch W (1998) Origins of east and south east Asian plant diversity. In: Zhang A-L, Wu S-G (eds) Floristic characteristics and diversity of East Asian plants—Proceedings of the First International Symposium on Floristic characteristics and diversity of east Asian plants. China Higher Education Press, Beijing, pp 56–70Google Scholar
  43. Li X-W, Li J (1993) A preliminary floristic study on the seed plants from the region of Hengduan Mountain. Act Bot Yunnan 15:217–231Google Scholar
  44. Linder C, Goertzen L, Heuvel B, Francisco-Ortega J, Jansen R (2000) The complete external transcribed spacer of 18S–26S rDNA: amplification and phylogenetic utility at low taxonomic levels in Asteraceae and closely allied families. Mol Phylogenet Evol 14:285–303PubMedCrossRefGoogle Scholar
  45. Ling Y (1979) Anaphalis. In: Ling Y (ed) Flora Reipublicae Popularis Sinicae (Flora of China) (Tomus 75) Angiospermae: Dicotyledonae: Compositae (2), Inuleae-Helenieae. Science Press, Beijing, pp 141–218Google Scholar
  46. Liu JQ, Wang YJ, Wang AL, Ohba H, Abbott RJ (2006) Radiation and diversification within the LigulariaCremanthodiumParasenecio complex (Asteraceae) triggered by uplift of the Qinghai–Tibetan Plateau. Mol Phylogenet Evol 38:31–49PubMedCrossRefGoogle Scholar
  47. Meng Y, Sun H, Yang Y-P, Nie Z-L (2010) Polyploidy and new chromosome counts in Anaphalis (Asteraceae: Gnaphalieae) from the Qinghai–Tibet Plateau of China. J Syst Evol 48:58–64CrossRefGoogle Scholar
  48. Merxmüller H, Leins P, Roessler H (1977) Inuleae: systematic review. In: Heywood VH, Harborne JB, Turner BL (eds) The biology and chemistry of the Compositae, vol 1. Academic Press, London, pp 577–602Google Scholar
  49. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858PubMedCrossRefGoogle Scholar
  50. Okuyama Y, Fujii N, Wakabayashi M, Kawakita A, Ito M, Watanabe M, Murakami N, Kato M (2005) Nonuniform concerted evolution and chloroplast capture: heterogeneity of observed introgression patterns in three molecular data partition phylogenies of asian Mitella (Saxifragaceae). Mol Biol Evol 22:285–296PubMedCrossRefGoogle Scholar
  51. Pant PC (1995) Anaphalis. In: Hajra PK, Rao RR, Singh DK, Uniyal BP (eds) Flora of India, vol 13. Botanical Survey of India, CalcuttaGoogle Scholar
  52. Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of the AIC and Bayesian approaches over likelihood ratio tests. Syst Biol 53:793–808PubMedCrossRefGoogle Scholar
  53. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818PubMedCrossRefGoogle Scholar
  54. Puttock F (1994) Re-analysis of Anderberg’s Gnaphalieae data matrix. Comps Newslett 25:1–14Google Scholar
  55. Qaiser M, Abid R (2003) Anaphalis. In: Qaiser M, Abid R (eds) Flora of Pakistan, vol 207. Department of Botany, University of Karachi and Missouri Botanical Press, St. Louis, pp 173–205Google Scholar
  56. Ree RH (2005) Phylogeny and the evolution of floral diversity in Pedicularis (Orobanchaceae). Int J Plant Sci 166:595–613CrossRefGoogle Scholar
  57. Royden LH, Burchfiel BC, van der Hilst RD (2008) The geological evolution of the Tibetan Plateau. Science 321:1054–1058PubMedCrossRefGoogle Scholar
  58. Smissen RD, Breitwieser I (2008) Species relationships and genetic variation in the New Zealand endemic Leucogenes (Asteraceae: Gnaphalieae). New Zeal J Bot 46:65–76CrossRefGoogle Scholar
  59. Smissen RD, Galbany-Casals M, Breitwieser I (2011) Ancient allopolyploidy in the everlasting daisies (Asteraceae: Gnaphalieae): complex relationships among extant clades. Taxon 60:649–662Google Scholar
  60. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690Google Scholar
  61. Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 57:758–771PubMedCrossRefGoogle Scholar
  62. Swofford DL (2003) PAUP*: Phylogenetic analysis using parsimony (*and other methods), version 4.0b10. Sinauer Associates, Sunderland, MassachusettsGoogle Scholar
  63. Wang Y-J, Liu J-Q, Miehe G (2007) Phylogenetic origins of the Himalayan endemic Dolomiaea, Diplazoptilon and Xanthopappus (Asteraceae: Cardueae) based on three DNA regions. Ann Bot 99:311–322PubMedCrossRefGoogle Scholar
  64. Wang Y-J, Susanna A, Raab-Straube EV, Milne R, Liu J-Q (2009) Island-like radiation of Saussurea (Asteraceae: Cardueae) triggered by uplifts of the Qinghai–Tibetan Plateau. Biol J Linn Soc 97:893–903CrossRefGoogle Scholar
  65. Ward J, Bayer R, Breitwieser I, Smissen R, Galbany M, Unwin M (2009) Gnaphalieae. In: Funk V, Susanna A, Stuessy T, Bayer R (eds) Systematics, evolution and biogeography of the Compositae. IAPT, Vienna, pp 539–588Google Scholar
  66. Wen J (1999) Evolution of eastern Asian and eastern North American disjunct distributions in flowering plants. Annu Rev Ecol Syst 30:421–455CrossRefGoogle Scholar
  67. Wen J, Ickert-Bond S, Nie Z-L, Li R (2010) Timing and modes of evolution of eastern Asian–North American biogeographic disjunctions in seed plants. In: Long M, Gu H, Zhou Z (eds) Darwin’s heritage today: proceedings of the Darwin 2010 Beijing International Conference. Higher Education Press, Beijing, pp 252–269Google Scholar
  68. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Shinsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322Google Scholar
  69. Wiens JJ (1998) Combining data sets with different phylogenetic histories. Syst Biol 47:568–581PubMedCrossRefGoogle Scholar
  70. Wu CY (1987) Flora Xizangica, vol 5. Science Press, BeijingGoogle Scholar
  71. Zhang ZM, Liou JG, Coleman RG (1984) An outline of the plate tectonics of China. Bull Geol Soc Am 95:295–312CrossRefGoogle Scholar
  72. Zhang J-W, Nie Z-L, Wen J, Sun H (2011) Molecular phylogeny and biogeography of three closely related genera, Soroseris, Stebbinsia, and Syncalathium (Asteraceae, Cichorieae), endemic to the Tibetan Plateau, SW China. Taxon 60:15–26Google Scholar

Copyright information

© The Botanical Society of Japan and Springer 2012

Authors and Affiliations

  • Ze-Long Nie
    • 1
    • 2
  • Vicki Funk
    • 2
  • Hang Sun
    • 1
  • Tao Deng
    • 1
  • Ying Meng
    • 1
    • 3
  • Jun Wen
    • 2
  1. 1.Key Laboratory of Biodiversity and Biogeography, Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
  2. 2.Department of Botany, National Museum of Natural History, MRC 166Smithsonian InstitutionWashington, DCUSA
  3. 3.Institute of Tibetan Plateau Research at Kunming, Kunming Institute of BotanyChinese Academy of SciencesKunmingChina

Personalised recommendations