Advertisement

Journal of Plant Research

, Volume 126, Issue 1, pp 151–159 | Cite as

The carbohydrate-binding module of Fragaria × ananassa expansin 2 (CBM-FaExp2) binds to cell wall polysaccharides and decreases cell wall enzyme activities “in vitro”

  • Cristina Nardi
  • Cristian Escudero
  • Natalia Villarreal
  • Gustavo Martínez
  • Pedro Marcos CivelloEmail author
Regular Paper

Abstract

A putative carbohydrate binding module (CBM) from strawberry (Fragaria × ananassa Duch.) expansin 2 (CBM-FaExp2) was cloned and the encoding protein was over-expressed in Escherichia coli and purified in order to evaluate its capacity to bind different cell wall polysaccharides “in vitro”. The protein CBM-FaExp2 bound to microcrystalline cellulose, xylan and pectin with different affinities (Kad = 33.6 ± 0.44 mL g−1, Kad = 11.37 ± 0.87 mL g−1, Kad = 10.4 ± 0.19 mL g−1, respectively). According to “in vitro” enzyme assays, this CBM is able to decrease the activity of cell wall degrading enzymes such as polygalacturonase, endo-glucanase, pectinase and xylanase, probably because the binding of CBM-FaExp2 to the different substrates interferes with enzyme activity. The results suggest that expansins would bind not only cellulose but also a wide range of cell wall polymers.

Keywords

CBM Cell wall Expansin Hydrolases Strawberry 

Notes

Acknowledgments

This work has been supported by grants from CONICET (PIP 0062), ANPCYT (PICT 2006-01140) and UNSAM (Biotechnology Program 2007). Authors thank José Luis Burgos (Comisión de Investigaciones Científicas, CIC) for valuable technical assistance.

References

  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  2. Barka EA, Kalantari S, Makhlouf J, Arul J (2000) Impact of UV-C irradiation on the cell wall-degrading enzymes during ripening of tomato (Lycopersicon esculentum L.) fruit. J Agric Food Chem 48:667–671PubMedCrossRefGoogle Scholar
  3. Bhandari S, Fujino T, Thammanagowda S, Zhang D, Xu F, Joshi CP (2006) Xylem-specific and stress-responsive coexpression of Korrigan endoglucanase and three secondary wall-associated cellulose synthase genes in aspen trees. Planta 224:828–837PubMedCrossRefGoogle Scholar
  4. Boraston AB, Bolam DN, Gilbert HJ, Davies GJ (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382:769–781PubMedCrossRefGoogle Scholar
  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  6. Brummell DA, Harpster MH (2001) Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Mol Biol 47:311–340PubMedCrossRefGoogle Scholar
  7. Brummell DA, Lashbrook CC, Bennett AB (1994) Plant endo-1,4-β-d-glucanases. Structure, properties, and physiological function. Am Chem Soc Symp Ser 566:100–129Google Scholar
  8. Brummell DA, Hall BD, Bennett AB (1999a) Antisense suppression of tomato endo-1,4-β-glucanase Cel2 mRNA accumulation increases the force required to break fruit abscission zones but does not affect fruit softening. Plant Mol Biol 40:615–622PubMedCrossRefGoogle Scholar
  9. Brummell DA, Harpster M, Civello PM, Palys JM, Bennett AB (1999b) Modifications of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening. Plant Cell 11:2203–2216PubMedGoogle Scholar
  10. Callahan AM, Scorza R, Basset C, Nickerson M, Abeles FB (2004) Deletions in an endopolygalacturonase gene cluster correlate non-melting flesh texture in peach. Funct Plant Biol 31:159–168CrossRefGoogle Scholar
  11. Chen NJ, Paull RE (2003) Endoxylanase expressed during papaya fruit ripening: purification, cloning and characterization. Funct Plant Biol 30:433–441CrossRefGoogle Scholar
  12. Chen L, Coutinho PM, Nikolov Z, Ford C (1995) Deletion analysis of the starch-binding domain of Aspergillus glucoamylase. Protein Eng 8:1049–1055PubMedCrossRefGoogle Scholar
  13. Choi D, Lee Y, Cho H, Kende H (2003) Regulation of expansin expression affects growth and development in transgenic rice plants. Plant Cell 15:1386–1398PubMedCrossRefGoogle Scholar
  14. Civello PM, Powell ALT, Sabehat A, Bennett AB (1999) An expansin gene expressed in ripening strawberry fruit. Plant Physiol 121:1273–1279PubMedCrossRefGoogle Scholar
  15. Cleemput G, Hessing M, van Oort M, Deconynck M, Delcour JA (1997) Purification and characterization of a β-d-xylosidase and an endo-xylanase from wheat flour. Plant Physiol 11:377–386Google Scholar
  16. Cosgrove DJ (2000a) Expansive growth of plant cell walls. Plant Physiol Biochem 38:109–124PubMedCrossRefGoogle Scholar
  17. Cosgrove DJ (2000b) Loosening of plant cell walls by expansins. Nature 407:321–326PubMedCrossRefGoogle Scholar
  18. Dotto MC, Martínez GA, Civello PM (2006) Expression of expansin genes in strawberry varieties with contrasting fruit firmness. Plant Physiol Biochem 44:301–307PubMedCrossRefGoogle Scholar
  19. Gilkes NR, Henrissat B, Kilburn DG, Miller RC, Warren RAJ (1991) Domains in microbial β-1,4-glycanases: sequence conservation, function and enzymes families. Microbiol Rev 55:303–315PubMedGoogle Scholar
  20. Gross KC (1982) A rapid and sensitive spectrophotometric method for assaying polygalacturonase using 2-cyanoacetamide. HortScience 17:933–934Google Scholar
  21. Guillen D, Santiago M, Linares L, Perez R, Morlon J, Ruiz B, Sanchez S, Rodriguez-Sanoja R (2007) α-Amylase starch binding domains: cooperative effects of binding to starch granules of multiple tandemly arranged domains. Appl Environ Microbiol 73:3833–3837PubMedCrossRefGoogle Scholar
  22. Hadfield KA, Bennett AB (1998) Polygalacturonases: many genes in search of a function. Plant Physiol 117:337–343PubMedCrossRefGoogle Scholar
  23. Hamaya H, Ito A, Moriguchi T, Kashimura Y (2003) Identification of a new expansin gene closely associated with peach fruit softening. Postharvest Biol Technol 29:1–10CrossRefGoogle Scholar
  24. Hiwasa K, Rose JC, Nakano R, Inaba A, Kubo Y (2003) Differential expression of seven α-expansin genes during growth and ripening of pear fruit. Physiol Plant 117:564–572PubMedCrossRefGoogle Scholar
  25. Hiwasa K, Nakano R, Hashimoto A, Matsuzaki M, Murayama H, Inaba A, Kub Y (2004) European, Chinese and Japanese pear fruits exhibit differential softening characteristics during ripening. J Exp Bot 27:1–10Google Scholar
  26. Levy I, Shani Z, Shoseyov O (2002) Modification of polysaccharides and plant cell wall by endo-1,4-β-glucanase and cellulose-binding domains. Biomol Eng 19:17–30PubMedCrossRefGoogle Scholar
  27. McCartney L, Blake AW, Flint J, Bolam DN, Boraston AB, Gilbert HJ, Knox JP (2006) Differential recognition of plant cell walls by microbial xylan-specific carbohydrate-binding modules. Proc Natl Acad Sci USA 103:4765–4770PubMedCrossRefGoogle Scholar
  28. McQueen-Mason SJ, Cosgrove DJ (1995) Expansin mode of action on cell walls. Plant Physiol 107:87–100PubMedGoogle Scholar
  29. McQueen-Mason S, Durachko DM, Cosgrove DJ (1992) Two endogenous proteins that induce cell wall extension in plants. Plant Cell 4:1425–1433PubMedGoogle Scholar
  30. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428CrossRefGoogle Scholar
  31. Nicol F, His I, Jauneau A, Vernhettes S, Canut H, Höfte H (1998) A plasma membrane-bound putative endo-1,4-β-d-glucanase is required for normal wall assembly and cell elongation in Arabidopsis. EMBO J 17:5563–5576PubMedCrossRefGoogle Scholar
  32. Nogata Y, Ohta H, Voragen AGJ (1993) Polygalacturonase in strawberry fruit. Phytochemistry 34:617–620CrossRefGoogle Scholar
  33. Obembe OO, Jacobsen E, Visser RGF, Vincken JP (2007a) Expression of an expansin carbohydrate-binding module affects xylem and phloem formation. Afr J Biotechnol 6:1608–1616Google Scholar
  34. Obembe OO, Jacobsen E, Timmers J, Gilbert HJ, Blake AW, Knox JP, Visser RGF, Vincken JP (2007b) Promiscuous, non-catalytic, tandem carbohydrate-binding modules modulate cell wall structure and development of tobacco plants. J Plant Res 120:605–617PubMedCrossRefGoogle Scholar
  35. Prabha TN, Bhagyalakshmi N (1998) Metabolism in ripening banana fruit. Phytochemistry 48:915–919CrossRefGoogle Scholar
  36. Redgwell RJ, Fry SC (1993) Xyloglucan endotransglycosylase activity increases during kiwifruit (Actinidia deliciosa) ripening (implications for fruit softening). Plant Physiol 103:1399–1406PubMedGoogle Scholar
  37. Rodriguez-Sanoja R, Ruiz B, Guyot JP, Sanchez S (2005) Starch-binding domain affects catalysis in two Lactobacillus R-amylases. Appl Environ Microbiol 71:297–302PubMedCrossRefGoogle Scholar
  38. Rose JKC, Bennett AB (1999) Cooperative disassembly of the cellulose-xyloglucan network of plant cell walls: parallels between cell expansion and fruit ripening. Trends Plant Sci 4:176–183PubMedCrossRefGoogle Scholar
  39. Rouau X, Ei-Hayek ML, Moreau D (1994) Effect of an enzyme preparation containing pentosanases on the bread-making quality of flours in relation to changes in pentosan properties. J Cereal Sci 19:259–272CrossRefGoogle Scholar
  40. Safra-Dassa L, Shani Z, Danin A, Roiz L, Shoseyov O, Wolf S (2006) Growth modulation of transgenic potato plants by heterologous expression of bacterial carbohydrate-binding module. Mol Breeding 17:355–364CrossRefGoogle Scholar
  41. Sampedro J, Cosgrove DJ (2005) Protein family review: the expansin superfamily. Genome Biol 6:1–12CrossRefGoogle Scholar
  42. Schröder R, Wegrzyn TF, Bolitho KM, Redgwell RJ (2004) Mannan transglycosylase: a novel enzyme activity in cell walls of higher plants. Planta 219:590–600PubMedCrossRefGoogle Scholar
  43. Trainotti L, Spolaore S, Ferrarese L, Casadoro G (1997) Characterization of ppEG1, a member of a multigene family which encodes endo-β-1,4-glucanase in peach. Plant Mol Biol 34:791–802PubMedCrossRefGoogle Scholar
  44. Urbanowicz BR, Catala C, Irwin D, Wilson DB, Ripoll DR, Rose JKC (2007) A tomato endo-β-1,4-glucanase, SlCel9C1, represents a distinct subclass with a new family of carbohydrate binding modules (CBM49). J Biol Chem 282:12066–12074PubMedCrossRefGoogle Scholar
  45. Villarreal NM, Rosli HG, Martínez GA, Civello PM (2008) Polygalacturonase activity and expression of related genes during ripening of strawberry cultivars with contrasting fruit firmness. Postharvest Biol Technol 47:141–150CrossRefGoogle Scholar
  46. Whitney SEC, Gidley MJ, McQueen-Mason SJ (2000) Probing expansin action using cellulose-hemicellulose composites. Plant J 22:327–334PubMedCrossRefGoogle Scholar
  47. Wong KKY, Tan LUL, Saddler JN (1998) Multiplicity of β-1,4-xylanase in microorganisms: functions and applications. Microbiol Rev 52:305–317Google Scholar
  48. Yoshida K, Imaizumi N, Kaneko S, Kawagoe Y, Tagiri A, Tanaka H, Nishitani K, Komae K (2006) Carbohydrate-binding module of a rice endo-β-1,4-glycanase, OsCel9A, expressed in auxin-induced lateral root primordia, is post-translationally truncated. Plant Cell Physiol 47:1555–1571PubMedCrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer 2012

Authors and Affiliations

  • Cristina Nardi
    • 1
  • Cristian Escudero
    • 1
  • Natalia Villarreal
    • 1
  • Gustavo Martínez
    • 1
    • 2
  • Pedro Marcos Civello
    • 2
    • 3
    Email author
  1. 1.IIB-INTECH (CONICET-UNSAM), Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Camino de Circunvalación LagunaBuenos AiresArgentina
  2. 2.Facultad de Ciencias ExactasUniversidad Nacional de La Plata (UNLP)La PlataArgentina
  3. 3.INFIVE (CONICET-UNLP), Instituto de Fisiología VegetalLa PlataArgentina

Personalised recommendations