Journal of Plant Research

, Volume 125, Issue 6, pp 755–769 | Cite as

Expressed sequence tags in cultivated peanut (Arachis hypogaea): discovery of genes in seed development and response to Ralstonia solanacearum challenge

  • Jiaquan Huang
  • Liying Yan
  • Yong Lei
  • Huifang Jiang
  • Xiaoping Ren
  • Boshou Liao
Regular Paper


Although an important oil crop, peanut has only 162,030 expressed sequence tags (ESTs) publicly available, 86,943 of which are from cultivated plants. More ESTs from cultivated peanuts are needed for isolation of stress-resistant, tissue-specific and developmentally important genes. Here, we generated 63,234 ESTs from our 5 constructed peanut cDNA libraries of Ralstonia solanacearum challenged roots, R. solanacearum challenged leaves, and unchallenged cultured peanut roots, leaves and developing seeds. Among these ESTs, there were 14,547 unique sequences with 7,961 tentative consensus sequences and 6,586 singletons. Putative functions for 47.8 % of the sequences were identified, including transcription factors, tissue-specific genes, genes involved in fatty acid biosynthesis and oil formation regulation, and resistance gene analogue genes. Additionally, differentially expressed genes, including those involved in ethylene and jasmonic acid signal transduction pathways, from both peanut leaves and roots, were identified in R. solanacearum challenged samples. This large expression dataset from different peanut tissues will be a valuable source for marker development and gene expression analysis. It will also be helpful for finding candidate genes for fatty acid synthesis and oil formation regulation as well as for studying mechanisms of interactions between the peanut host and R. solanacearum pathogen.


Arachis hypogaea L. Expressed sequence tags Fatty acid biosynthesis Bacterial wilt resistance Signal transduction 



This work was supported by grants from the National Basic Research Program of China (2011CB109304-4), the National High Technology Research and Development Program of China (2006AA10A115) and Chinese Agricultural Research System (CARS-14).

Supplementary material

10265_2012_491_MOESM1_ESM.doc (26 kb)
Supplement figure 1 (DOC 25 kb)
10265_2012_491_MOESM2_ESM.doc (3.5 mb)
Supplement figure 2 (DOC 3612 kb)
10265_2012_491_MOESM3_ESM.doc (183 kb)
Supplement figure 3 (DOC 183 kb)
10265_2012_491_MOESM4_ESM.doc (24 kb)
Supplement figure 4 (DOC 24 kb)
10265_2012_491_MOESM5_ESM.doc (39 kb)
Supplement table 1 (DOC 39 kb)
10265_2012_491_MOESM6_ESM.doc (168 kb)
Supplement table 2 (DOC 168 kb)
10265_2012_491_MOESM7_ESM.doc (192 kb)
Supplement table 3 (DOC 192 kb)


  1. Afroz A, Khan MR, Ahsan N, Komatsu S (2009) Comparative proteomic analysis of bacterial wilt susceptible and resistant tomato cultivars. Peptides 30:1600–1607PubMedCrossRefGoogle Scholar
  2. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  3. Asamizu E, Nakamura Y, Sato S, Tabata S (2000) Generation of 7137 non-redundant expressed sequence tags from a legume, Lotus japonicus. DNA Res 7:127–130PubMedCrossRefGoogle Scholar
  4. Bi YP, Liu W, Xia H, Su L, Zhao CZ, Wan SB, Wang XJ (2010) EST sequencing and gene expression profiling of cultivated peanut (Arachis hypogaea L.). Genome 53:832–839PubMedCrossRefGoogle Scholar
  5. Boote KJ (1982) Growth stages of peanut (A. hypogaea L.). Peanut Sci 9:35–40CrossRefGoogle Scholar
  6. Chen YY, Lin YM, Chao TC, Wang JF, Liu AC, Ho FI, Cheng CP (2009) Virus-induced gene silencing reveals the involvement of ethylene-, salicylic acid- and mitogen-activated protein kinase-related defense pathways in the resistance of tomato to bacterial wilt. Physiol Plant 136:324–335PubMedCrossRefGoogle Scholar
  7. Chi XY, Chen MC, Yang QL, He YN, Pan LJ, Gao Y, Yun SL (2010) Isolation and expression analysis of a β-ketoacyl-acyl carrier protein synthase I gene from Arachis hypogaea L. Legume Genomics Genet 1. doi: 10.5376/lgg.2010.5301.0003
  8. Chu Y, Holbrook CC, Ozias-Akins P (2009) Two alleles of ahFAD2B control the high oleic acid trait in cultivated peanut. Crop Sci 49:2029–2036CrossRefGoogle Scholar
  9. Chuang RLC, Chen JCF, Chu J, Tzen JTC (1996) Characterization of seed oil bodies and their surface oleosin isoforms from rice embryos. J Biochem 120:74–81PubMedCrossRefGoogle Scholar
  10. Dang PM, Guo B, Scully BT (2008) Identification and analysis of viral sequences in peanut (Arachis hypogaea L.) expressed sequence tags. Phytopathology 98:S44–S44Google Scholar
  11. Denyer K, Johnson P, Zeeman S, Smith AM (2001) The control of amylose synthesis. J Plant Physiol 158:479–487CrossRefGoogle Scholar
  12. Deslandes L, Olivier J, Theulieres F, Hirsch J, Feng DX, Bittner-Eddy P, Beynon J, Marco Y (2002) Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. Proc Natl Acad Sci USA 99:2404–2409PubMedCrossRefGoogle Scholar
  13. Dittrich H, Kutchan TM, Zenk MH (1992) The jasmonate precursor, 12-oxo-phytodienoic acid, induces phytoalexin synthesis in Petroselinum crispum cell cultures. FEBS Lett 309:33–36PubMedCrossRefGoogle Scholar
  14. Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10:366–371PubMedCrossRefGoogle Scholar
  15. Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185PubMedGoogle Scholar
  16. Ewing RM, Ben Kahla A, Poirot O, Lopez F, Audic S, Claverie JM (1999) Large-scale statistical analyses of rice ESTs reveal correlated patterns of gene expression. Genome Res 9:950–959PubMedCrossRefGoogle Scholar
  17. Fernandes J, Brendel V, Gai XW, Lal S, Chandler VL, Elumalai P, Galbraith DW, Pierson EA, Walbot V (2002) Comparison of RNA expression profiles based on maize expressed sequence tag frequency analysis and micro-array hybridization. Plant Physiol 128:896–910PubMedCrossRefGoogle Scholar
  18. Green P (2004) CrossMatch.
  19. Gueguen Y, Cadoret JP, Flament D, Barreau-Roumiguiere C, Girardot AL, Garnier J, Hoareau A, Bachere E, Escoubas JM (2003) Immune gene discovery by expressed sequence tags generated from hemocytes of the bacteria-challenged oyster, Crassostrea gigas. Gene 303:139–145PubMedCrossRefGoogle Scholar
  20. Guo BZ, Chen XP, Dang P, Scully BT, Liang XQ, Holbrook CC, Yu JJ, Culbreath AK (2008) Peanut gene expression profiling in developing seeds at different reproduction stages during Aspergillus parasiticus infection. BMC Dev Biol 8:12PubMedCrossRefGoogle Scholar
  21. Guo BZ, Chen XP, Hong YB, Liang XQ, Dang P, Brenneman T, Holbrook CC, Culbreath A (2009) Analysis of gene expression profiles in leaf tissues of cultivated peanuts and development of EST-SSR markers and gene discovery. Int J Plant Genomics. doi: 10.1155/2009/715605 PubMedGoogle Scholar
  22. Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, Eilbeck K, Lewis S, Marshall B, Mungall C, Richter J, Rubin GM, Blake JA, Bult C, Dolan M, Drabkin H, Eppig JT, Hill DP, Ni L, Ringwald M, Balakrishnan R, Cherry JM, Christie KR, Costanzo MC, Dwight SS, Engel S, Fisk DG, Hirschman JE, Hong EL, Nash RS, Sethuraman A, Theesfeld CL, Botstein D, Dolinski K, Feierbach B, Berardini T, Mundodi S, Rhee SY, Apweiler R, Barrell D, Camon E, Dimmer E, Lee V, Chisholm R, Gaudet P, Kibbe W, Kishore R, Schwarz EM, Sternberg P, Gwinn M, Hannick L, Wortman J, Berriman M, Wood V, de la Cruz N, Tonellato P, Jaiswal P, Seigfried T, White R (2004) The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 32:D258–D261PubMedCrossRefGoogle Scholar
  23. Hase S, Shimizu A, Nakaho K, Takenaka S, Takahashi H (2006) Induction of transient ethylene and reduction in severity of tomato bacterial wilt by Pythium oligandrum. Plant Pathol 55:537–543CrossRefGoogle Scholar
  24. Hase S, Takahashi S, Takenaka S, Nakaho K, Arie T, Seo S, Ohashi Y, Takahashi H (2008) Involvement of jasmonic acid signalling in bacterial wilt disease resistance induced by biocontrol agent Pythium oligandrum in tomato. Plant Pathol 57:870–876CrossRefGoogle Scholar
  25. Jain S, Srivastava S, Sarin NB, Kav NNV (2006) Proteomics reveals elevated levels of PR 10 proteins in saline-tolerant peanut (Arachis hypogaea) calli. Plant Physiol Biochem 44:253–259PubMedCrossRefGoogle Scholar
  26. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34:D354–D357PubMedCrossRefGoogle Scholar
  27. Kochert GD, Halward T, Stalker HT (1996) Genetic variation in peanut and its implications in plant breeding. In: Pickersgill B, Lock JM (eds) Advances in legume science 8: legumes of economic importance. Royal Botanic Gardens, Kew, pp 19–30Google Scholar
  28. Lee CM, Lee YJ, Lee MH, Nam HG, Cho TJ, Hahn TR, Cho MJ, Sohn U (1998) Large-scale analysis of expressed genes from the leaf of oilseed rape (Brassica napus L.). Plant Cell Rep 17:930–936CrossRefGoogle Scholar
  29. Li HG, Wang L, Zhang YS, Lin XD, Liao B, Yan YS, Huang SZ (2005) Cloning and sequencing of the gene Ahy-beta encoding a subunit of peanut conarachin. Plant Sci 168:1387–1392CrossRefGoogle Scholar
  30. Li MJ, Li AQ, Xia H, Zhao CZ, Li CS, Wan SB, Bi YP, Wang XJ (2009) Cloning and sequence analysis of putative type II fatty acid synthase genes from Arachis hypogaea L. J Biosci 34:227–238PubMedCrossRefGoogle Scholar
  31. Li MJ, Wang XJ, Su L, Bi YP, Wan SB (2010a) Characterization of five putative acyl carrier protein (ACP) isoforms from developing seeds of Arachis hypogaea L. Plant Mol Biol Rep 28:365–372CrossRefGoogle Scholar
  32. Li MJ, Xia H, Zhao CZ, Li AQ, Li CS, Bi YP, Wan SB, Wang XJ (2010b) Isolation and characterization of putative acetyl-CoA carboxylases in Arachis hypogaea L. Plant Mol Biol Rep 28:58–68CrossRefGoogle Scholar
  33. Liang XQ, Chen XP, Hong YB, Liu HY, Zhou GY, Li SX, Guo BZ (2009) Utility of EST-derived SSR in cultivated peanut (Arachis hypogaea L.) and Arachis wild species. BMC Plant Biol 9:35PubMedCrossRefGoogle Scholar
  34. Liao BS (2005) A broad review and perspective on breeding for resistance to bacterial wilt. In: Allen C, Prior P, Hayward AC (eds) Bacterial wilt disease and the Ralstonia solanacearum species complex. The American Phytopathological Society, pp 225–238Google Scholar
  35. Lin YM, Chou IC, Wang JF, Ho FI, Chu YJ, Huang PC, Lu DK, Shen HL, Elbaz M, Huang SM, Cheng CP (2008) Transposon mutagenesis reveals differential pathogenesis of Ralstonia solanacearum on tomato and Arabidopsis. Mol Plant Microbe Interact 21:1261–1270PubMedCrossRefGoogle Scholar
  36. Luo M, Dang P, Bausher MG, Holbrook CC, Lee RD, Lynch RE, Guo BZ (2005a) Identification of transcripts involved in resistance responses to leaf spot disease caused by Cercosporidium personatum in peanut (Arachis hypogaea). Phytopathology 95:381–387PubMedCrossRefGoogle Scholar
  37. Luo M, Dang P, Guo BZ, He G, Holbrook CC, Bausher MG, Lee RD (2005b) Generation of expressed sequence tags (ESTs) for gene discovery and marker development in cultivated peanut. Crop Sci 45:346–353CrossRefGoogle Scholar
  38. Luo M, Liang XQ, Dang P, Holbrook CC, Bausher MG, Lee RD, Guo BZ (2005c) Microarray-based screening of differentially expressed genes in peanut in response to Aspergillus parasiticus infection and drought stress. Plant Sci 169:695–703CrossRefGoogle Scholar
  39. Mulder NJ, Apweiler R, Attwood TK, Bairoch A, Barrell D, Bateman A, Binns D, Biswas M, Bradley P, Bork P, Bucher P, Copley RR, Courcelle E, Das U, Durbin R, Falquet L, Fleischmann W, Griffiths-Jones S, Haft D, Harte N, Hulo N, Kahn D, Kanapin A, Krestyaninova M, Lopez R, Letunic I, Lonsdale D, Silventoinen V, Orchard SE, Pagni M, Peyruc D, Ponting CP, Selengut JD, Servant F, Sigrist CJ, Vaughan R, Zdobnov EM (2003) The InterPro Database, 2003 brings increased coverage and new features. Nucleic Acids Res 31:315–318PubMedCrossRefGoogle Scholar
  40. Nobile PM, Lopes CR, Barsalobres-Cavallari C, Quecim V, Coutinho LL, Hoshino AA, Gimenes MA (2008) Peanut genes identified during initial phase of Cercosporidium personatum infection. Plant Sci 174:78–87CrossRefGoogle Scholar
  41. Payton P, Kottapalli KR, Rowland D, Faircloth W, Guo BZ, Burow M, Puppala N, Gallo M (2009) Gene expression profiling in peanut using high density oligonucleotide microarrays. BMC Genomics 10:265PubMedCrossRefGoogle Scholar
  42. Pickett TA (1950) Composition of developing peanut seed. Plant Physiol 25:210–214PubMedCrossRefGoogle Scholar
  43. Pradhanang PM, Ji P, Momol MT, Olson SM, Mayfield JL, Jones JB (2005) Application of acibenzolar-S-methyl enhances host resistance in tomato against Ralstonia solanacearum. Plant Dis 89:989–993CrossRefGoogle Scholar
  44. Proite K, Leal-Bertioli S, Bertioli D, Moretzsohn M, da Silva F, Martins N, Guimaraes P (2007) ESTs from a wild Arachis species for gene discovery and marker development. BMC Plant Biol 7:7PubMedCrossRefGoogle Scholar
  45. Robatzek S, Bittel P, Chinchilla D, Kochner P, Felix G, Shiu SH, Boller T (2007) Molecular identification and characterization of the tomato flagellin receptor LeFLS2, an orthologue of Arabidopsis FLS2 exhibiting characteristically different perception specificities. Plant Mol Biol 64:539–547PubMedCrossRefGoogle Scholar
  46. Rounsley SD, Glodek A, Sutton G, Adams MD, Somerville CR, Venter JC, Kerlavage AR (1996) The construction of Arabidopsis expressed sequence tag assemblies—a new resource to facilitate gene identification. Plant Physiol 112:1177–1183PubMedCrossRefGoogle Scholar
  47. Saha S, Enugutti B, Rajakumari S, Rajasekharan R (2006) Cytosolic triacylglycerol biosynthetic pathway in oilseeds. Molecular cloning and expression of peanut cytosolic diacylglycerol acyltransferase. Plant Physiol 141:1533–1543PubMedCrossRefGoogle Scholar
  48. Shoemaker R, Keim P, Vodkin L, Retzel E, Clifton SW, Waterston R, Smoller D, Coryell V, Khanna A, Erpelding J, Gai XW, Brendel V, Raph-Schmidt C, Shoop EG, Vielweber CJ, Schmatz M, Pape D, Bowers Y, Theising B, Martin J, Dante M, Wylie T, Granger C (2002) A compilation of soybean ESTs: generation and analysis. Genome 45:329–338PubMedCrossRefGoogle Scholar
  49. Sterky F, Regan S, Karlsson J, Hertzberg M, Rohde A, Holmberg A, Amini B, Bhalerao R, Larsson M, Villarroel R, Van Montagu M, Sandberg G, Olsson O, Teeri TT, Boerjan W, Gustafsson P, Uhlen M, Sundberg B, Lundeberg J (1998) Gene discovery in the wood-forming tissues of poplar: analysis of 5,692 expressed sequence tags. Proc Nat Acad Sci USA 95:13330–13335PubMedCrossRefGoogle Scholar
  50. Tatusov RL, Koonin EV, Lipman DJ (1997) A genomic perspective on protein families. Science 278:631–637PubMedCrossRefGoogle Scholar
  51. Tatusov R, Fedorova N, Jackson J, Jacobs A, Kiryutin B, Koonin E, Krylov D, Mazumder R, Mekhedov S, Nikolskaya A, Rao BS, Smirnov S, Sverdlov A, Vasudevan S, Wolf Y, Yin J, Natale D (2003) The COG database: an updated version includes eukaryotes. BMC Bioinforma 4:41CrossRefGoogle Scholar
  52. Tirumalaraju SV, Jain M, Gallo M (2011) Differential gene expression in roots of nematode-resistant and -susceptible peanut (Arachis hypogaea) cultivars in response to early stages of peanut root-knot nematode (Meloidogyne arenaria) parasitization. J Plant Physiol 168:481–492PubMedCrossRefGoogle Scholar
  53. Upchurch R (2008) Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol Lett 30:967–977PubMedCrossRefGoogle Scholar
  54. Wang HY, Guo JH, Lambert KN, Lin Y (2007) Developmental control of Arabidopsis seed oil biosynthesis. Planta 226:773–783PubMedCrossRefGoogle Scholar
  55. Yamamoto K, Sasaki T (1997) Large-scale EST sequencing in rice. Plant Mol Biol 35:135–144PubMedCrossRefGoogle Scholar
  56. Yan YS, Lin XD, Zhang YS, Wang L, Wu KQ, Huang SZ (2005) Isolation of peanut genes encoding arachins and conglutins by expressed sequence tags. Plant Sci 169:439–445CrossRefGoogle Scholar
  57. Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, Wang J (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:W293–W297PubMedCrossRefGoogle Scholar
  58. Zdobnov EM, Apweiler R (2001) InterProScan—an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17:847–848PubMedCrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer 2012

Authors and Affiliations

  • Jiaquan Huang
    • 1
  • Liying Yan
    • 1
  • Yong Lei
    • 1
  • Huifang Jiang
    • 1
  • Xiaoping Ren
    • 1
  • Boshou Liao
    • 1
  1. 1.Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanPeople’s Republic of China

Personalised recommendations