Skip to main content
Log in

An Arabidopsis RNase III-like protein, AtRTL2, cleaves double-stranded RNA in vitro

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Class 1 ribonuclease III (RNase III), found in bacteria and yeast, is involved in processing functional RNA molecules such as ribosomal RNAs (rRNAs). However, in Arabidopsis thaliana, the lack of an obvious phenotype or quantitative change in mature rRNAs in class 1 RNase III (AtRTL2) mutants and overexpressing plants suggests that AtRTL2 is not involved in rRNA maturation. We characterized the in vitro activity of AtRTL2 to consider its in vivo function. AtRTL2 cleaved double-stranded RNA (dsRNA) specifically in vitro, yielding products of approximately 25 nt or longer in length, in contrast to 10–20 nt long products in bacteria and yeasts. Although dsRNA-binding activity was not detected, the dsRNA-binding domains in AtRTL2 were essential for its dsRNA-cleaving activity. Accumulation of small RNAs derived from transgene dsRNAs was increased when AtRTL2 was transiently expressed in Nicotiana benthamiana leaves by agroinfiltration. These results raise the possibility that AtRTL2 has functions distinct from those of other class 1 RNase IIIs in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Amarasinghe AK, Calin-Jageman I, Harmouch A, Sun W, Nicholson AW (2001) Escherichia coli ribonuclease III: affinity purification of hexahistidine-tagged enzyme and assays for substrate binding and cleavage. Methods Enzymol 342:143–158

    Article  PubMed  CAS  Google Scholar 

  • Aravind L, Koonin EV (2001) A natural classification of ribonucleases. Methods Enzymol 341:3–28

    Article  PubMed  CAS  Google Scholar 

  • Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366

    Article  PubMed  CAS  Google Scholar 

  • Blaszczyk J, Tropea JE, Bubunenko M, Routzahn KM, Waugh DS, Court DL, Ji X (2001) Crystallographic and modeling studies of RNase III suggest a mechanism for double-stranded RNA cleavage. Structure 9:1225–1236

    Article  PubMed  CAS  Google Scholar 

  • Blevins T, Rajeswaran R, Shivaprasad PV, Beknazariants D, Si-Ammour A, Park HS, Vazquez F, Robertson D, Meins F Jr, Hohn T, Pooggin MM (2006) Four plant Dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Res 34:6233–6246

    Article  PubMed  CAS  Google Scholar 

  • Calin-Jageman I, Amarasinghe AK, Nicholson AW (2001) Ethidium-dependent uncoupling of substrate binding and cleavage by Escherichia coli ribonuclease III. Nucleic Acids Res 29:1915–1925

    Article  PubMed  CAS  Google Scholar 

  • Cerutti L, Mian N, Bateman A (2000) Domains in gene silencing and cell differentiation proteins: the novel PAZ domain and redefinition of the Piwi domain. Trends Biochem Sci 25:481–482

    Article  PubMed  CAS  Google Scholar 

  • Chanfreau G, Elela SA, Ares M Jr, Guthrie C (1997) Alternative 3′-end processing of U5 snRNA by RNase III. Genes Dev 11:2741–2751

    Article  PubMed  CAS  Google Scholar 

  • Chanfreau G, Rotondo G, Legrain P, Jacquier A (1998) Processing of a dicistronic small nucleolar RNA precursor by the RNA endonuclease Rnt1. EMBO J 17:3726–3737

    Article  PubMed  CAS  Google Scholar 

  • Chapman EJ, Prokhnevsky AI, Gopinath K, Dolja VV, Carrington JC (2004) Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step. Genes Dev 18:1179–1186

    Article  PubMed  CAS  Google Scholar 

  • Comella P, Pontvianne F, Lahmy S, Vignols F, Barbezier N, Debures A, Jobet E, Brugidou E, Echeverria M, Sáez-Vásquez J (2008) Characterization of a ribonuclease III-like protein required for cleavage of the pre-rRNA in the 3’ETS in Arabidopsis. Nucleic Acids Res 36:1163–1175

    Article  PubMed  CAS  Google Scholar 

  • Danin-Kreiselman M, Lee CY, Chanfreau G (2003) RNAse III-mediated degradation of unspliced pre-mRNAs and lariat introns. Mol Cell 11:1279–1289

    Article  PubMed  CAS  Google Scholar 

  • Dong Z, Han MH, Fedoroff N (2008) The RNA-binding proteins HYL1 and SE promote accurate in vitro processing of pri-miRNA by DCL1. Proc Natl Acad Sci USA 105:9970–9975

    Article  PubMed  CAS  Google Scholar 

  • Dunn JJ (1976) RNase III cleavage of single-stranded RNA. Effect of ionic strength on the fideltiy of cleavage. J Biol Chem 251:3807–3814

    PubMed  CAS  Google Scholar 

  • Dunn JJ, Studier FW (1973) T7 early RNAs are generated by site-specific cleavages. Proc Natl Acad Sci USA 70:1559–1563

    Article  PubMed  CAS  Google Scholar 

  • Dunoyer P, Himber C, Voinnet O (2005) DICER-LIKE 4 is required for RNA interference and produces the 21-nucleotide small interfering RNA component of the plant cell-to-cell silencing signal. Nat Genet 37:1356–1360

    Article  PubMed  CAS  Google Scholar 

  • Elela SA, Igel H, Ares M Jr (1996) RNase III cleaves eukaryotic preribosomal RNA at a U3 snoRNP-dependent site. Cell 85:115–124

    Article  PubMed  CAS  Google Scholar 

  • Fierro-Monti I, Mathews MB (2000) Proteins binding to duplexed RNA: one motif, multiple functions. Trends Biochem Sci 25:241–246

    Article  PubMed  CAS  Google Scholar 

  • Filippov V, Solovyev V, Filippova M, Gill SS (2000) A novel type of RNase III family proteins in eukaryotes. Gene 245:213–221

    Article  PubMed  CAS  Google Scholar 

  • Henderson IR, Zhang X, Lu C, Johnson L, Meyers BC, Green PJ, Jacobsen SE (2006) Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nat Genet 38:721–725

    Article  PubMed  CAS  Google Scholar 

  • Hiraguri A, Itoh R, Kondo N, Nomura Y, Aizawa D, Murai Y, Koiwa H, Seki M, Shinozaki K, Fukuhara T (2005) Specific interactions between Dicer-like proteins and HYL1/DRB-family dsRNA-binding proteins in Arabidopsis thaliana. Plant Mol Biol 57:173–188

    Article  PubMed  CAS  Google Scholar 

  • Iino Y, Sugimoto A, Yamamoto M (1991) S. pombe pac1+, whose overexpression inhibits sexual development, encodes a ribonuclease III-like RNase. EMBO J 10:221–226

    PubMed  CAS  Google Scholar 

  • Jacobsen SE, Running MP, Meyerowitz EM (1999) Disruption of an RNA helicase/RNAse III gene in Arabidopsis causes unregulated cell division in floral meristems. Development 126:5231–5243

    PubMed  CAS  Google Scholar 

  • Kharrat A, Macias MJ, Gibson TJ, Nilges M, Pastore A (1995) Structure of the dsRNA binding domain of E. coli RNase III. EMBO J 14:3572–3584

    PubMed  CAS  Google Scholar 

  • Kreuze JF, Savenkov EI, Cuellar W, Li X, Valkonen JP (2005) Viral class 1 RNase III involved in suppression of RNA silencing. J Virol 79:7227–7238

    Article  PubMed  CAS  Google Scholar 

  • Kufel J, Dichtl B, Tollervey D (1999) Yeast Rnt1p is required for cleavage of the pre-ribosomal RNA in the 3′ ETS but not the 5′ ETS. RNA 5:909–917

    Article  PubMed  CAS  Google Scholar 

  • Lamontagne B, Tremblay A, Abou Elela S (2000) The N-terminal domain that distinguishes yeast from bacterial RNase III contains a dimerization signal required for efficient double-stranded RNA cleavage. Mol Cell Biol 20:1104–1115

    Article  PubMed  CAS  Google Scholar 

  • Li HL, Chelladurai BS, Zhang K, Nicholson AW (1993) Ribonuclease III cleavage of a bacteriophage T7 processing signal. Divalent cation specificity, and specific anion effects. Nucleic Acids Res 21:1919–1925

    Article  PubMed  CAS  Google Scholar 

  • Lichner Z, Silhavy D, Burgyán J (2003) Double-stranded RNA-binding proteins could suppress RNA interference-mediated antiviral defences. J Gen Virol 84:975–980

    Article  PubMed  CAS  Google Scholar 

  • MacRae IJ, Doudna JA (2007) Ribonuclease revisited: structural insights into ribonuclease III family enzymes. Curr Opin Struct Biol 17:138–145

    Article  PubMed  CAS  Google Scholar 

  • March PE, Gonzalez MA (1990) Characterization of the biochemical properties of recombinant ribonuclease III. Nucleic Acids Res 18:3293–3298

    Article  PubMed  CAS  Google Scholar 

  • Nicholson AW (2003) The ribonuclease III family: forms and functions in RNA maturation, decay, and gene silencing. In: Hannon GJ (ed) RNAi: a guide to gene silencing. Cold Spring Harbor Press, Cold Spring Harbor, NY, pp 149–174

    Google Scholar 

  • Nikolaev N, Silengo L, Schlessinger D (1973) Synthesis of a large precursor to ribosomal RNA in a mutant of Escherichia coli. Proc Natl Acad Sci USA 70:3361–3365

    Article  PubMed  CAS  Google Scholar 

  • Provost P, Dishart D, Doucet J, Frendewey D, Samuelsson B, Rådmark O (2002) Ribonuclease activity and RNA binding of recombinant human Dicer. EMBO J 21:5864–5874

    Article  PubMed  CAS  Google Scholar 

  • Redko Y, Bechhofer DH, Condon C (2008) Mini-III, an unusual member of the RNase III family of enzymes, catalyses 23S ribosomal RNA maturation in B. subtilis. Mol Microbiol 68:1096–1106

    Article  PubMed  CAS  Google Scholar 

  • Robertson HD, Dunn JJ (1975) Ribonucleic acid processing activity of Escherichia coli ribonuclease III. J Biol Chem 250:3050–3056

    PubMed  CAS  Google Scholar 

  • Robertson HD, Webster RE, Zinder ND (1968) Purification and properties of ribonuclease III from Escherichia coli. J Biol Chem 243:82–91

    PubMed  CAS  Google Scholar 

  • Rotondo G, Frendewey D (1996) Purification and characterization of the Pac1 ribonuclease of Schizosaccharomyces pombe. Nucleic Acids Res 24:2377–2386

    Article  PubMed  CAS  Google Scholar 

  • Ruiz MT, Voinnet O, Baulcombe DC (1998) Initiation and maintenance of virus-induced gene silencing. Plant Cell 10:937–946

    Article  PubMed  CAS  Google Scholar 

  • Sano T, Nagayama A, Ogawa T, Ishida I, Okada Y (1997) Transgenic potato expressing a double-stranded RNA-specific ribonuclease is resistant to potato spindle tuber viroid. Nat Biotechnol 15:1290–1294

    Article  PubMed  CAS  Google Scholar 

  • Sun W, Jun E, Nicholson AW (2001) Intrinsic double-stranded-RNA processing activity of Escherichia coli ribonuclease III lacking the dsRNA-binding domain. Biochemistry 40:14976–14984

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Y, Ogawa T, Takahashi H, Ishida I, Takeuchi Y, Yamamoto M, Okada Y (1995) Resistance against multiple plant viruses in plants mediated by a double stranded-RNA specific ribonuclease. FEBS Lett 372:165–168

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Xu H, Miraglia LJ, Crooke ST (2000) Human RNase III is a 160-kDa protein involved in preribosomal RNA processing. J Biol Chem 275:36957–36965

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Kazusa DNA Research Institute and the Arabidopsis Biological Resource Center for kindly providing the Arabidopsis seeds and cDNA clones, Drs. Yasuhiko Matsushita and Masahiro Kasahara, Tokyo University of Agriculture and Technology, Tokyo, Japan, Dr. Yasuo Niwa, University of Shizuoka, Shizuoka, Japan, and Dr. James C. Carrington, Oregon State University, USA, for kindly providing plasmids, and Dr. David C. Baulcombe, University of Cambridge, UK, for kindly providing N. benthamiana seeds. This work was supported by Grants-in-Aid for Scientific Research (No. 21580411 to T.F. and No. 20580045 to H.M.) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Fukuhara.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Phenotypes of AtRTL2 mutant and AtRTL2-overexpressing plants. a Photographs of an A. thaliana WT plant, an AtRTL2 mutant plant and an AtRTL2-overexpressing plant that were grown for six weeks. Both mutant and overexpressing plants did not show abnormal phenotypes. b Northern analysis of AtRTL2 mRNA from leaves of each plant (upper panel). About 10 μg of total RNA was separated on a 1.2% agarose gel and stained by EtBr (lower panel). No quantitative changes in mature rRNAs are shown in each lane. WT, wild type; atrtl2, AtRTL2 T-DNA-insertion mutant (SALK 067855); 35S:AtRTL2, AtRTL2-overexpressing plant. (PPT 328 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiyota, E., Okada, R., Kondo, N. et al. An Arabidopsis RNase III-like protein, AtRTL2, cleaves double-stranded RNA in vitro. J Plant Res 124, 405–414 (2011). https://doi.org/10.1007/s10265-010-0382-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-010-0382-x

Keywords