Skip to main content
Log in

Expression and functions of myo-inositol monophosphatase family genes in seed development of Arabidopsis

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Myo-inositol monophosphatase (IMP) catalyzes the dephosphorylation of myo-inositol 3-phosphate in the last step of myo-inositol biosynthesis. IMP is also important in phosphate metabolism and is required for the biosynthesis of cell wall polysaccharides, phytic acid, and phosphatidylinositol. In Arabidopsis, IMP is encoded by VTC4. There are, however, two additional IMP candidate genes, IMPL1 and IMPL2, which have not yet been elucidated. In our genetic studies of Arabidopsis IMP genes, only the loss-of-function mutant impl2 showed embryonic lethality at the globular stage. All IMP genes were expressed in a similar manner both in the vegetative and reproductive organs. In developing seeds, expression of IMP genes was not coupled with the expression of the genes encoding myo-inositol phosphate synthases, which supply the substrate for IMPs in the de novo synthesis pathway. Instead, expression of IMP genes was correlated with expression of the gene for myo-inositol polyphosphate 1-phosphatase (SAL1), which is involved in the myo-inositol salvage pathway, suggesting a possible salvage pathway role in seed development. Moreover, the partial rescue of the impl2 phenotype by histidine application implies that IMPL2 is also involved in histidine biosynthesis during embryo development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abid G, Silue S, Muhovski Y, Jacquemin JM, Toussaint A, Baudoin JP (2009) Role of myo-inositol phosphate synthase and sucrose synthase genes in plant seed development. Gene 439:1–10

    Article  PubMed  CAS  Google Scholar 

  • Atack JR, Broughton HB, Pollack SJ (1995) Structure and mechanism of inositol monophosphatase. FEBS Lett 361:1–7

    Article  PubMed  CAS  Google Scholar 

  • Bone R, Springer JP, Atack JR (1992) Structure of inositol monophosphatase, the putative target of lithium therapy. Proc Natl Acad Sci USA 89:10031–10035

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Conklin PL, Gatzek S, Wheeler GL, Dowdle J, Raymond MJ, Rolinski S, Isupov M, Littlechild JA, Smirnoff N (2006) Arabidopsis thaliana VTC4 encodes l-galactose-1-P phosphatase, a plant ascorbic acid biosynthetic enzyme. J Biol Chem 281:15662–15670

    Article  PubMed  CAS  Google Scholar 

  • Diehl RE, Whiting P, Potter J, Gee N, Ragan CI, Linemeyer D, Schoepfer R, Bennett C, Dixon RAF (1990) Cloning and expression of bovine brain inositol monophosphatase. J Biol Chem 265:5946–5949

    PubMed  CAS  Google Scholar 

  • Fu J, Peterson K, Guttieri M, Souza E, Raboy V (2008) Barley (Hordeum vulgare L.) inositol monophosphatase: gene structure and enzyme characteristics. Plant Mol Biol 67:629–642

    Article  PubMed  CAS  Google Scholar 

  • Gee NS, Ragan CI, Watling KJ, Aspley S, Jackson RG, Reid GG, Gani D, Shute JK (1988) The purification and properties of myo-inositol monophosphatase from bovine brain. Biochem J 249:883–889

    PubMed  CAS  Google Scholar 

  • Gill R, Mohammed F, Badyal R, Coates L, Erskine P, Thompson D, Cooper J, Gore M, Wood S (2005) High-resolution structure of myo-inositol monophosphatase, the putative target of lithium therapy. Acta Cryst D 61:545–555

    Article  Google Scholar 

  • Gillaspy GE, Keddie JS, Oda K, Gruissem W (1995) Plant inositol monophosphatase is a lithium-sensitive enzyme encoded by a multigene family. Plant Cell 7:2175–2185

    Article  PubMed  CAS  Google Scholar 

  • Hajdukiewicz P, Svab Z, Maliga P (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989–994

    Article  PubMed  CAS  Google Scholar 

  • Hallcher LM, Sherman WR (1980) The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphatase from bovine brain. J Biol Chem 255:10896–10901

    PubMed  CAS  Google Scholar 

  • Islas-Flores I, Villanueva MA (2007) Inositol-1 (or 4)-monophosphatase from Glycine max embryo axes is a phosphatase with broad substrate specificity that includes phytate dephosphorylation. Biochim Biophys Acta 1770:543–550

    PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Keller R, Brearley CA, Trethewey RN, Muller-Rober B (1998) Reduced inositol content and altered morphology in transgenic potato plants inhibited for 1d-myo-inositol 3-phosphate synthase. Plant J 16:403–410

    Article  CAS  Google Scholar 

  • Laing WA, Bulley S, Wright M, Cooney J, Jensen D, Barraclough D, MacRae E (2004) A highly specific l-galactose-1-phosphate phosphatase on the path to ascorbate biosynthesis. Proc Natl Acad Sci USA 101:16976–16981

    Article  PubMed  CAS  Google Scholar 

  • Loewus FA, Loewus MW (1983) Myo-inositol: its biosynthesis and metabolism. Annu Rev Plant Physiol 34:137–161

    Article  CAS  Google Scholar 

  • Loewus FA, Murthy PPN (2000) Myo-inositol metabolism in plants. Plant Sci 150:1–19

    Article  CAS  Google Scholar 

  • McAllister G, Whiting P, Hammond EA, Knowles MR, Atack JR, Bailey FJ, Maigetter R, Ragan CI (1992) cDNA cloning of human and rat brain myo-inositol monophosphatase. Expression and characterization of the human recombinant enzyme. Biochem J 284:749–754

    PubMed  CAS  Google Scholar 

  • Mitsuhashi N, Kondo M, Nakaune S, Ohnishi M, Hayashi M, Hara-Nishimura I, Richardson A, Fukaki H, Nishimura M, Mimura T (2008) Localization of myo-inositol-1-phosphate synthase to the endosperm in developing seeds of Arabidopsis. J Exp Bot 59:3069–3076

    Article  PubMed  CAS  Google Scholar 

  • Mormann S, Lömker A, Rückert C, Gaigalat L, Tauch A, Pühler A, Kalinowski J (2006) Random mutagenesis in Corynebacterium glutamicum ATCC 13032 using an IS6100-based transposon vector identified the last unknown gene in the histidine biosynthesis pathway. BMC Genomics 7:205

    Article  PubMed  Google Scholar 

  • Muralla R, Sweeney C, Stepansky A, Leustek T, Meinke D (2007) Genetic dissection of histidine biosynthesis in Arabidopsis. Plant Physiol 144:890–903

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Neuwald AF, York JD, Majerus PW (1991) Diverse proteins homologous to inositol monophosphatase. FEBS Lett 294:16–18

    Article  PubMed  CAS  Google Scholar 

  • Nunes ACS, Vianna GR, Cuneo F, Amaya-Farfán J, Capdeville G, Rech EL, Aragão FJL (2006) RNAi mediated silencing of the myo-inositol-1-phosphate synthase gene (GmMIPS1) in transgenic soybean inhibited seed development and reduced phytate content. Planta 224:125–132

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi T, Ohba H, Seo KC, Im J, Sato Y, Iwayama Y, Furuichi T, Chung SK, Yoshikawa T (2007) Spatial expression patterns and biochemical properties distinguish a second myo-inositol monophosphatase IMPA2 from IMPA1. J Biol Chem 282:637–646

    Article  PubMed  CAS  Google Scholar 

  • Petersen LN, Marineo S, Mandalà S, Davids F, Sewell BT, Ingle RA (2010) The missing link in plant histidine biosynthesis: arabidopsis myoinositol monophosphatase-like2 encodes a functional histidinol-phosphate phosphatase. Plant Physiol 152:1186–1196

    Article  PubMed  CAS  Google Scholar 

  • Quintero FJ, Garciadebias B, Rodriguez-Navarro A (1996) The SAL1 gene of Arabidopsis, encoding an enzyme with 3′(2′),5′-bisphosphate nucleotidase and inositol polyphosphate 1-phosphatase activities, increases salt tolerance in yeast. Plant Cell 8:529–537

    Article  PubMed  CAS  Google Scholar 

  • Stec B, Yang H, Johnson KA, Chen L, Roberts MF (2000) MJ0109 is an enzyme that is both an inositol monophosphatase and the ‘missing’ archaeal fructose-1,6-bisphosphatase. Nat Struct Biol 7:1046–1050

    Article  PubMed  CAS  Google Scholar 

  • Stepansky A, Leustek T (2006) Histidine biosynthesis in plants. Amino Acids 30:127–142

    Article  PubMed  CAS  Google Scholar 

  • Styer JC, Keddie J, Spence J, Gillaspy GE (2004) Genomic organization and regulation of the LeIMP-1 and LeIMP-2 genes encoding myo-inositol monophosphatase in tomato. Gene 326:35–41

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Tanaka K, Kuwano M, Yoshida KT (2007) Expression pattern of inositol phosphate-related enzymes in rice (Oryza sativa L.): implications for the phytic acid biosynthetic pathway. Gene 405:55–64

    Article  PubMed  CAS  Google Scholar 

  • Takimoto K, Okada M, Matsuda Y, Nakagawa H (1985) Purification and properties of myo-inositol-1-phosphatase from rat brain. J Biochem 98:363–370

    PubMed  CAS  Google Scholar 

  • Torabinejad J, Donahue JL, Gunesekera BN, Allen-Daniels MJ, Gillaspy GE (2009) VTC4 is a bifunctional enzyme that affects myoinositol and ascorbate biosynthesis in plants. Plant Physiol 150:951–961

    Article  PubMed  CAS  Google Scholar 

  • York JD, Ponder JW, Majerus PW (1995) Definition of a metal-dependent/Li+-inhibited phosphomonoesterase protein family based upon a conserved three-dimensional core structure. Proc Natl Acad Sci USA 92:5149–5153

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We sincerely thank the following individuals for providing helpful advice and technical assistance: Dr. Takeshi Kuroha from the Department of Biology, University of Washington, Seattle, USA; Dr. Eiichi Minami from the Division of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba, Japan; Haniyeh Bidadi from the University of Tsukuba, Tsukuba, Japan for technical assistance; and the Arabidopsis Biological Resource Center for providing seeds of the T-DNA insertion lines. This work was supported in part by Grant-in-Aid for Science Research on Priority Areas (Grant No. 21027004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinobu Satoh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, Y., Yazawa, K., Yoshida, S. et al. Expression and functions of myo-inositol monophosphatase family genes in seed development of Arabidopsis. J Plant Res 124, 385–394 (2011). https://doi.org/10.1007/s10265-010-0381-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-010-0381-y

Keywords

Navigation