Skip to main content
Log in

Toward genome-wide metabolotyping and elucidation of metabolic system: metabolic profiling of large-scale bioresources

  • JPR Symposium
  • International Conference on Arabidopsis Research 2010
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

An improvement in plant production is increasingly important for a sustainable human society. For this purpose, understanding the mechanism of plant production, that is, the plant metabolic system, is an immediate necessity. After the sequencing of the Arabidopsis genome, it has become possible to obtain a bird’s eye view of its metabolism by means of omics such as transcriptomics and proteomics. Availability of thousands of transcriptome data points in the public domain has resulted in great advances in the methodology of functional genomics. Metabolome data can be a “gold mine” of biological findings. However, as the total throughput of metabolomics is far lower than that of transcriptomics due to technical difficulties, there is currently no publicly available large-scale metabolome dataset that is comparable in size to the transcriptome dataset. Recently, we established a novel methodology, termed widely targeted metabolomics, which can generate thousands of metabolome data points in a high-throughput manner. We previously conducted a targeted metabolite analysis of large-scale Arabidopsis bioresources, namely transposon-tagged mutants and accessions, to make a smaller dataset of metabolite accumulation. In this paper, we release approximately 3,000 metabolic profiles obtained by targeted analysis for 36 metabolites and discuss the possible regulation of amino acid accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akiyama K, Chikayama E, Yuasa H, Shimada Y, Tohge T, Shinozaki K, Hirai MY, Sakurai T, Kikuchi J, Saito K (2008) PRIMe: a web site that assembles tools for metabolomics and transcriptomics. In Silico Biol 8:339–345

    CAS  PubMed  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Bais P, Moon SM, He K, Leitao R, Dreher K, Walk T, Sucaet Y, Barkan L, Wohlgemuth G, Roth MR, Wurtele ES, Dixon P, Fiehn O, Lange BM, Shulaev V, Sumner LW, Welti R, Nikolau BJ, Rhee SY, Dickerson JA (2010) PlantMetabolomics.org: a web portal for plant metabolomics experiments. Plant Physiol, pp 109.151027

  • Beekwilder J, van Leeuwen W, van Dam NM, Bertossi M, Grandi V, Mizzi L, Soloviev M, Szabados L, Molthoff JW, Schipper B, Verbocht H, de Vos RC, Morandini P, Aarts MG, Bovy A (2008) The impact of the absence of aliphatic glucosinolates on insect herbivory in Arabidopsis. PLoS ONE 3:e2068

    Article  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Craigon DJ, James N, Okyere J, Higgins J, Jotham J, May S (2004) NASCArrays: a repository for microarray data generated by NASC’s transcriptomics service. Nucleic Acids Res 32:D575–D577

    Article  CAS  PubMed  Google Scholar 

  • Gigolashvili T, Engqvist M, Yatusevich R, Muller C, Flugge UI (2007a) HAG2/MYB76 and HAG3/MYB29 exert a specific and coordinated control on the regulation of aliphatic glucosinolate biosynthesis in Arabidopsis thaliana. New Phytol 177:627–642

    Article  PubMed  Google Scholar 

  • Gigolashvili T, Yatusevich R, Berger B, Muller C, Flugge U-I (2007b) The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana. Plant J 51:247–261

    Article  CAS  PubMed  Google Scholar 

  • Glinski M, Weckwerth W (2006) The role of mass spectrometry in plant systems biology. Mass Spectrom Rev 25:173–214

    Article  CAS  PubMed  Google Scholar 

  • Goda H, Sasaki E, Akiyama K, Maruyama-Nakashita A, Nakabayashi K, Li W, Ogawa M, Yamauchi Y, Preston J, Aoki K, Kiba T, Takatsuto S, Fujioka S, Asami T, Nakano T, Kato H, Mizuno T, Sakakibara H, Yamaguchi S, Nambara E, Kamiya Y, Takahashi H, Hirai MY, Sakurai T, Shinozaki K, Saito K, Yoshida S, Shimada Y (2008) The AtGenExpress hormone and chemical treatment data set: experimental design, data evaluation, model data analysis and data access. Plant J 55:526–542

    Article  CAS  PubMed  Google Scholar 

  • Grubb CD, Abel S (2006) Glucosinolate metabolism and its control. Trends Plant Sci 11:89–100

    Article  CAS  PubMed  Google Scholar 

  • Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333

    Article  CAS  PubMed  Google Scholar 

  • Hirai MY, Yano M, Goodenowe DB, Kanaya S, Kimura T, Awazuhara M, Arita M, Fujiwara T, Saito K (2004) Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proc Natl Acad Sci USA 101:10205–10210

    Article  CAS  PubMed  Google Scholar 

  • Hirai MY, Sugiyama K, Sawada Y, Tohge T, Obayashi T, Suzuki A, Araki R, Sakurai N, Suzuki H, Aoki K, Goda H, Nishizawa OI, Shibata D, Saito K (2007) Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. Proc Natl Acad Sci USA 104:6478–6483

    Article  CAS  PubMed  Google Scholar 

  • Horan K, Jang C, Bailey-Serres J, Mittler R, Shelton C, Harper JF, Zhu J-K, Cushman JC, Gollery M, Girke T (2008) Annotating genes of known and unknown function by large-scale coexpression analysis. Plant Physiol 147:41–57

    Article  CAS  PubMed  Google Scholar 

  • Jen CH, Manfield IW, Michalopoulos I, Pinney JW, Willats WG, Gilmartin PM, Westhead DR (2006) The Arabidopsis co-expression tool (ACT): a WWW-based tool and database for microarray-based gene expression analysis. Plant J 46:336–348

    Article  CAS  PubMed  Google Scholar 

  • Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D’Angelo C, Bornberg-Bauer E, Kudla J, Harter K (2007) The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J 50:347–363

    Article  CAS  PubMed  Google Scholar 

  • Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmuller E, Dormann P, Weckwerth W, Gibon Y, Stitt M, Willmitzer L, Fernie AR, Steinhauser D (2005) GMD@CSB.DB: the Golm Metabolome Database. Bioinformatics 21:1635–1638

    Article  CAS  PubMed  Google Scholar 

  • Kuromori T, Hirayama T, Kiyosue Y, Takabe H, Mizukado S, Sakurai T, Akiyama K, Kamiya A, Ito T, Shinozaki K (2004) A collection of 11,800 single-copy Ds transposon insertion lines in Arabidopsis. Plant J 37:897–905

    Article  CAS  PubMed  Google Scholar 

  • Kuromori T, Wada T, Kamiya A, Yuguchi M, Yokouchi T, Imura Y, Takabe H, Sakurai T, Akiyama K, Hirayama T, Okada K, Shinozaki K (2006) A trial of phenome analysis using 4000 Ds-insertional mutants in gene-coding regions of Arabidopsis. Plant J 47:640–651

    Article  CAS  PubMed  Google Scholar 

  • Kusano M, Fukushima A, Arita M, Jonsson P, Moritz T, Kobayashi M, Hayashi N, Tohge T, Saito K (2007) Unbiased characterization of genotype-dependent metabolic regulations by metabolomic approach in Arabidopsis thaliana. BMC Syst Biol 1:53

    Article  PubMed  Google Scholar 

  • Magnan F, Ranty B, Charpenteau M, Sotta B, Galaud J-P, Aldon D (2008) Mutations in AtCML9, a calmodulin-like protein from Arabidopsis thaliana, alter plant responses to abiotic stress and abscisic acid. Plant J 56:575–589

    Article  CAS  PubMed  Google Scholar 

  • Malitsky S, Blum E, Less H, Venger I, Elbaz M, Morin S, Eshed Y, Aharoni A (2008) The transcript and metabolite networks affected by the two clades of Arabidopsis glucosinolate biosynthesis regulators. Plant Physiol 148:2021–2049

    Article  CAS  PubMed  Google Scholar 

  • Manfield IW, Jen CH, Pinney JW, Michalopoulos I, Bradford JR, Gilmartin PM, Westhead DR (2006) Arabidopsis Co-expression Tool (ACT): web server tools for microarray-based gene expression analysis. Nucleic Acids Res 34:W504–W509

    Article  CAS  PubMed  Google Scholar 

  • Matsuda F, Hirai MY, Sasaki E, Akiyama K, Yonekura-Sakakibara K, Provart NJ, Sakurai T, Shimada Y, Saito K (2010) AtMetExpress development: a phytochemical atlas of Arabidopsis thaliana development. Plant Physiol 152:566–578

    Article  PubMed  Google Scholar 

  • Mutwil M, Obro J, Willats WGT, Persson S (2008) GeneCAT—novel webtools that combine BLAST and co-expression analyses. Nucl Acids Res 36:W320–W326

    Article  CAS  PubMed  Google Scholar 

  • Obayashi T, Hayashi S, Saeki M, Ohta H, Kinoshita K (2009) ATTED-II provides coexpressed gene networks for Arabidopsis. Nucl Acids Res 37:D987–D991

    Article  CAS  PubMed  Google Scholar 

  • Rawat A, Seifert G, Deng Y (2008) Novel implementation of conditional co-regulation by graph theory to derive co-expressed genes from microarray data. BMC Bioinformatics 9:S7

    Article  PubMed  Google Scholar 

  • Saito K, Matsuda F (2010) Metabolomics for functional genomics, systems biology, and biotechnology. Annu Rev Plant Biol 61

  • Saito K, Hirai MY, Yonekura-Sakakibara K (2008) Decoding genes with coexpression networks and metabolomics—‘majority report by precogs’. Trends Plant Sci 13:36–43

    Article  CAS  PubMed  Google Scholar 

  • Sawada Y, Akiyama K, Sakata A, Kuwahara A, Otsuki H, Sakurai T, Saito K, Hirai MY (2009a) Widely targeted metabolomics based on large-scale MS/MS data for elucidating metabolite accumulation patterns in plants. Plant Cell Physiol 50:37–47

    Article  CAS  PubMed  Google Scholar 

  • Sawada Y, Toyooka K, Kuwahara A, Sakata A, Nagano M, Saito K, Hirai MY (2009b) Arabidopsis bile acid: sodium symporter family protein 5 is involved in methionine-derived glucosinolate biosynthesis. Plant Cell Physiol 50:1579–1586

    Article  CAS  PubMed  Google Scholar 

  • Sawada Y, Kuwahara A, Nagano M, Narisawa T, Sakata A, Saito K, Hirai MY (2009c) Omics-based approaches to methionine side chain elongation in Arabidopsis: characterization of the genes enconding methylthioalkylmalate isomerase and methylthioalkylmalate dehydrogenase. Plant Cell Physiol 50:1181–1190

    Article  CAS  PubMed  Google Scholar 

  • Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Scholkopf B, Weigel D, Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37:501–506

    Article  CAS  PubMed  Google Scholar 

  • Sønderby IE, Hansen BG, Bjarnholt N, Ticconi C, Halkier BA, Kliebenstein DJ (2007) A systems biology approach identifies a R2R3 Myb gene subfamily with distinct and overlapping functions in regulation of aliphatic glucosinolates. PLoS ONE 2:e1322

    Article  PubMed  Google Scholar 

  • Srinivasasainagendra V, Page GP, Mehta T, Coulibaly I, Loraine AE (2008) CressExpress: a tool for large-scale mining of expression data from Arabidopsis. Plant Physiol 147:1004–1016

    Article  CAS  PubMed  Google Scholar 

  • Steinhauser D, Usadel B, Luedemann A, Thimm O, Kopka J (2004) CSB.DB: a comprehensive systems-biology database. Bioinformatics 20:3647–3651

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Kawazoe M, Wada M, Hirai A, Nakamura K, Altaf-Ul-Amin M, Sawada Y, Hirai MY, Kanaya S (2009) KNApSAcK gene classification system for Arabidopsis thaliana: comparative genomic analysis of unicellular to seed plants. Plant Biotechnol 26:509–516

    CAS  Google Scholar 

  • Tokimatsu T, Sakurai N, Suzuki H, Ohta H, Nishitani K, Koyama T, Umezawa T, Misawa N, Saito K, Shibata D (2005) KaPPA-view: a web-based analysis tool for integration of transcript and metabolite data on plant metabolic pathway maps. Plant Physiol 138:1289–1300

    Article  CAS  PubMed  Google Scholar 

  • Toufighi K, Brady SM, Austin R, Ly E, Provart NJ (2005) The botany array resource: e-Northerns, expression angling, and promoter analyses. Plant J 43:153–163

    Article  CAS  PubMed  Google Scholar 

  • Unwin RD, Griffiths JR, Leverentz MK, Grallert A, Hagan IM, Whetton AD (2005) Multiple reaction monitoring to identify sites of protein phosphorylation with high sensitivity. Mol Cell Proteomics 4:1134–1144

    Article  CAS  PubMed  Google Scholar 

  • Weckwerth W, Loureiro ME, Wenzel K, Fiehn O (2004) Differential metabolic networks unravel the effects of silent plant phenotypes. Proc Natl Acad Sci USA 101:7809–7814

    Article  CAS  PubMed  Google Scholar 

  • Werner E, Croixmarie V, Umbdenstock T, Ezan E, Chaminade P, Tabet JC, Junot C (2008a) Mass spectrometry-based metabolomics: accelerating the characterization of discriminating signals by combining statistical correlations and ultrahigh resolution. Anal Chem 80:4918–4932

    Article  CAS  PubMed  Google Scholar 

  • Werner E, Heilier JF, Ducruix C, Ezan E, Junot C, Tabet JC (2008b) Mass spectrometry for the identification of the discriminating signals from metabolomics: Current status and future trends. J Chromatogr B Analyt Technol Biomed Life Sci 871:143–163

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology Agency (Project name: “Elucidation of Amino Acid Metabolism in Plants Based on Integrated Omics Analyses”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masami Yokota Hirai.

Additional information

M. Y. Hirai and Y. Sawada contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirai, M.Y., Sawada, Y., Kanaya, S. et al. Toward genome-wide metabolotyping and elucidation of metabolic system: metabolic profiling of large-scale bioresources. J Plant Res 123, 291–298 (2010). https://doi.org/10.1007/s10265-010-0337-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-010-0337-2

Keywords

Navigation