Advertisement

Journal of Plant Research

, Volume 123, Issue 4, pp 411–419 | Cite as

Influence of stand density on soil CO2 efflux for a Pinus densiflora forest in Korea

  • Nam Jin Noh
  • Yowhan SonEmail author
  • Sue Kyoung Lee
  • Tae Kyung Yoon
  • Kyung Won Seo
  • Choonsig Kim
  • Woo-Kyun Lee
  • Sang Won Bae
  • Jaehong Hwang
JPR Symposium Carbon cycle process in East Asia

Abstract

We investigated the influence of stand density [938 tree ha−1 for high stand density (HD), 600 tree ha−1 for medium stand density (MD), and 375 tree ha−1 for low stand density (LD)] on soil CO2 efflux (R S) in a 70-year-old natural Pinus densiflora S. et Z. forest in central Korea. Concurrent with R S measurements, we measured litterfall, total belowground carbon allocation (TBCA), leaf area index (LAI), soil temperature (ST), soil water content (SWC), and soil nitrogen (N) concentration over a 2-year period. The R S (t C ha−1 year−1) and leaf litterfall (t C ha−1 year−1) values varied with stand density: 6.21 and 2.03 for HD, 7.45 and 2.37 for MD, and 6.96 and 2.23 for LD, respectively. In addition, R S was correlated with ST (R 2 = 0.77–0.80, P < 0.001) and SWC (R 2 = 0.31–0.35, P < 0.001). It appeared that stand density influenced R S via changes in leaf litterfall, LAI and SWC. Leaf litterfall (R 2 = 0.71), TBCA (R 2 = 0.64–0.87), and total soil N contents in 2007 (R 2 = 0.94) explained a significant amount of the variance in R S (P < 0.01). The current study showed that stand density is one of the key factors influencing R S due to the changing biophysical and environmental factors in P. densiflora.

Keywords

Litterfall Pinus densiflora Soil CO2 efflux Soil nitrogen Soil temperature Soil water content Stand density 

Notes

Acknowledgments

This study was supported by the Korea Science and Engineering Foundation (Grant No. R01-2006-000-10863-0, A3 Foresight Program: Grant No. A307-K001).

References

  1. Bolstad PV, Gower ST (1990) Estimation of leaf area index in fourteen southern Wisconsin forest stands using a potable radiometer. Tree Physiol 7:115–124PubMedGoogle Scholar
  2. Curiel Yuste J, Janssens IA, Carrara A, Ceulemans R (2004) Annual Q 10 of soil respiration reflects plant phenological patterns as well as temperature sensitivity. Globe Change Biol 10:161–169CrossRefGoogle Scholar
  3. Curiel Yuste J, Janssens IA, Ceulemans R (2005) Calibration and validation of an empirical approach to model soil CO2 efflux in a deciduous forest. Biogeochemistry 73:209–230CrossRefGoogle Scholar
  4. Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173CrossRefPubMedGoogle Scholar
  5. Davidson EA, Belk E, Boone RD (1998) Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Globe Change Biol 4:217–227CrossRefGoogle Scholar
  6. Davidson EA, Savage K, Bolstad P, Clark DA, Curtis PS, Ellsworth DS, Hanson PJ, Law BE, Luo Y, Pregitzer KS, Randolph JC, Zak D (2002) Belowground carbon allocation in forests estimated from litterfall and IRGA-based soil respiration measurements. Agric For Meteorol 113:39–51CrossRefGoogle Scholar
  7. Giardina CP, Ryan MG (2002) Total belowground carbon allocation in a fast-growing Eucalyptus plantation estimated using a carbon balance approach. Ecosystems 5:487–499CrossRefGoogle Scholar
  8. Gough CM, Seiler JR (2004) The influence of environmental, soil carbon, root and stand characteristics on soil CO2 efflux in loblolly pine (Pinus taeda L.) plantations located on the South Carolina Coastal Plain. For Ecol Manag 191:353–363CrossRefGoogle Scholar
  9. Gower ST, Vogt KA, Grier CC (1992) Carbon dynamics of rocky mountain Douglas-fir: influence of water and nutrient availability. Ecol Monogr 62:43–65CrossRefGoogle Scholar
  10. Gower ST, Reich PB, Son Y (1993) Canopy dynamics and aboveground production of five tree species with different leaf longevities. Tree Physiol 12:327–345PubMedGoogle Scholar
  11. Hibbard KA, Law BE, Reichstein M, Sulzman J (2005) An analysis of soil respiration across northern hemisphere temperate ecosystems. Biogeochemistry 73:29–70CrossRefGoogle Scholar
  12. Högberg P, Nordgren A, Buchmann N, Taylor AF, Ekblad A, Högberg MN, Nyberg G, Ottosson-Löfvenius M, Read DJ (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792CrossRefPubMedGoogle Scholar
  13. Hwang J, Son Y, Kim JS (2001) An improved soil core sampler. J Kor For Soc 90:788–791 (in Korean with English abstract)Google Scholar
  14. Irvine J, Law BE (2002) Contrasting soil respiration in young and old-growth ponderosa pine forests. Globe Change Biol 8:1183–1194CrossRefGoogle Scholar
  15. Janssen IA, Lankreijer H, Matteucci G, Kowalski AS, Buchmann N, Epron D, Pilegaard K, Kutsch W, Longdoz B, Grünwald T, Montagnani L, Dore S, Rebmann C, Moors EJ, Grelle A, Rannik Ü, Morgenstern K, Oltchev S, Clement R, Guðmundsson J, Minerbi S, Berbigier P, Ibrom A, Moncrieff J, Aubinet M, Bernhofer C, Jensen NO, Vesala T, Granier A, Schulze ED, Lindroth A, Dolman AJ, Jarvis PG, Ceulemans R, Valentini R (2001) Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Globe Change Biol 7:269–278CrossRefGoogle Scholar
  16. Jonckheere I, Fleck S, Nackaerts K, Muys B, Coppin P, Weiss M, Baret F (2004) Review of methods for in situ leaf area index determination. Part I. Theories, sensors and hemishpherical photography. Agric For Meteorol 121:19–35CrossRefGoogle Scholar
  17. Kim C, Son Y, Lee WK, Jeong J, Noh NJ (2009) Influences of forest tending works on carbon distribution and cycling in a Pinus densiflora S. et Z. stand in Korea. For Ecol Manag 257:1420–1426CrossRefGoogle Scholar
  18. Knight DH, Vose JM, Baldwin VC, Ewel KC, Grodzinska K (1994) Contrasting patterns in pine forest ecosystems. Ecol Bull 43:9–19Google Scholar
  19. Korea Forest Service (2008) Statistical Year Book of Forestry, Korea. (in Korean) Google Scholar
  20. Law BE, Ryan MG, Anthomi PM (1999) Seasonal and annual respiration of a ponderosa pine forests at different developmental stages. Globe Change Biol 7:755–777CrossRefGoogle Scholar
  21. Li Y, Xu M, Zou X (2006) Heterotrophic soil respiration in relation to environmental factors and microbial biomass in two wet tropical forests. Plant Soil 28:193–201CrossRefGoogle Scholar
  22. Litton CM, Ryan MG, Knight DH, Stahl P (2003) Soil-surface carbon dioxide efflux and microbial biomass in relation to tree density 13 years after a stand replacing fire in a lodgepole pine ecosystem. Globe Change Biol 9:680–696CrossRefGoogle Scholar
  23. Litton CM, Ryan MG, Knight DH (2004) Effects of tree density and stand age on carbon allocation patterns in postfire lodgepole pine. Ecol Appl 14:460–475CrossRefGoogle Scholar
  24. Litton CM, Raich JW, Ryan MG (2007) Carbon allocation in forest ecosystems. Globe Change Biol 13:2089–2109CrossRefGoogle Scholar
  25. Lou Y, Zhou X (2006) Soil Respiration and the Environment. Academic Press, DublinGoogle Scholar
  26. Luyssaert S, Schulze ED, Börner A, Knohl A, Hessenmöller D, Law BE, Ciais P, Grace J (2008) Old-growth forests as global carbon sinks. Nature 455:213–215CrossRefPubMedGoogle Scholar
  27. Mo W, Lee M-S, Uchida M, Inatomi M, Saigusa N, Mariko S, Koizumi H (2005) Seasonal and annual variations in soil respiration in a cool-temperate deciduous broad-leaved forest in Japan. Agric For Meteorol 134:81–94CrossRefGoogle Scholar
  28. Nakane K, Yamamoto M, Tsubota H (1983) Estimation of root respiration rate in a mature forest ecosystem. Jpn J Ecol 33:397–408Google Scholar
  29. Nakane K, Tsubota H, Yamamoto M (1984) Cycling of soil carbon in a Japanese red pine forest I. Before clear-felling. Bot Mag Tokyo 97:39–60CrossRefGoogle Scholar
  30. Ohashi M, Gyokusen K, Saito A (1999) Measurement of carbon dioxide evolution from a Japanese cedar (Cryptomeria japonica D. Don) forest floor using and open-flow chamber method. For Ecol Manag 256:201–208Google Scholar
  31. Pangle RE, Seiler J (2002) Influence of seedling roots, environmental factors and soil characteristics on soil CO2 efflux rates in a 2-year-old loblolly pine (Pinus taeda L.) plantation in the Virginia Piedmont. Environ Poll 116:S85–S96CrossRefGoogle Scholar
  32. Raich JW (1998) Aboveground productivity and soil respiration in three Hawaiian rain forests. For Ecol Manag 107:309–318CrossRefGoogle Scholar
  33. Raich JW, Nadelhoffer KJ (1989) Belowground carbon allocation in forest ecosystems: global trends. Ecology 70:1346–1354CrossRefGoogle Scholar
  34. Raich JW, Potter CS, Bhagawati D (2002) Interannual variability in global soil respiration, 1980–94. Globe Change Biol 8:800–812CrossRefGoogle Scholar
  35. Ryan MG, Linder S, Vose JM, Hubbard RM (1994) Dark respiration of pines. Ecol Bull 43:50–63Google Scholar
  36. Ryu SR, Concilio A, Chen J, North M, Ma S (2009) Prescribed burning and mechanical thinning effects on belowground conditions and soil respiration in a mixed-conifer forest, California. For Ecol Manag 257:1324–1332CrossRefGoogle Scholar
  37. Saiz G, Green C, Butterbach-Bahl K, Kiese R, Avitabile V, Farrell EP (2006) Seasonal and spatial variability of soil respiration in four Sitka spruce stands. Plant Soils 287:161–176CrossRefGoogle Scholar
  38. SAS (2004) SAS/STAT 9.1 user’s guide. SAS Institute, CaryGoogle Scholar
  39. Son Y, Jun YC, Lee YY, Kim RH, Yang SY (2004) Soil carbon dioxide evolution, litter decomposition, and nitrogen availability four years after thinning a Japanese larch plantation. Commun Soil Sci Plant Anal 35:1111–1122CrossRefGoogle Scholar
  40. Son Y, Kim DY, Park IH, Yi MJ, Jin HO (2007) Production and Nutrient Cycling of Oak Forests in Korea: a Case Study of Quercus mongolica and Q. variabilis Stands (in Korean). Kangwon National University Press, KoreaGoogle Scholar
  41. Striegl RG, Wickland KP (1998) Effects of a clear-cut harvest on soil respiration in a jack pine-lichen woodland. Can J For Res 28:534–539CrossRefGoogle Scholar
  42. Tang J, Qi Y, Xu M, Misson L, Goldstein AH (2005) Forest thinning and soil respiration in a ponderosa pine plantation in the Sierra Nevada. Tree Physiol 25:57–66PubMedGoogle Scholar
  43. Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea. How can it occur? Biogeochemistry 13:87–115CrossRefGoogle Scholar
  44. Vose JM, Dougherty PM, Long JN, Smith FW, Gholz HL, Curran PJ (1994) Factors influencing the amount and distribution of leaf area of pine stands. Ecol Bull 43:102–114Google Scholar
  45. Wang CK, Yang JY, Zhang QZ (2006) Soil respiration in six temperate forests in China. Globe Change Biol 12:2103–2114CrossRefGoogle Scholar
  46. Wiseman PE, Seiler JR (2004) Soil CO2 efflux across four age classes of plantation loblolly pine (Pinus taeda L.) on the Virginia Piedmont. For Ecol Manag 192:297–311CrossRefGoogle Scholar
  47. Xiao Y (2003) Variation in needle longevity of Pinus tabulaeformis forests at different geographic scales. Tree Physiol 23:463–471PubMedGoogle Scholar
  48. Yan J, Wang Y, Zhou G, Zhang D (2006) Estimates of soil respiration and net primary production of three forests at different succession stages in south China. Globe Change Biol 12:810–821CrossRefGoogle Scholar
  49. Yi MJ, Son Y, Jin HO, Park IH, Kim DY, Kim YS, Shin DM (2005) Belowground carbon allocation of natural Quercus mongolica forests estimated from litterfall and soil respiration measurements. Korean J Agric For Meteorol 7:227–234 (in Korean with English abstract)Google Scholar

Copyright information

© The Botanical Society of Japan and Springer 2010

Authors and Affiliations

  • Nam Jin Noh
    • 1
  • Yowhan Son
    • 1
    Email author
  • Sue Kyoung Lee
    • 1
  • Tae Kyung Yoon
    • 1
  • Kyung Won Seo
    • 1
  • Choonsig Kim
    • 2
  • Woo-Kyun Lee
    • 1
  • Sang Won Bae
    • 3
  • Jaehong Hwang
    • 3
  1. 1.Division of Environmental Science and Ecological EngineeringKorea UniversitySeoulKorea
  2. 2.Department of Forest ResourcesJinju National UniversityJinjuKorea
  3. 3.Korea Forest Research InstitutionPocheonKorea

Personalised recommendations