Journal of Plant Research

, Volume 123, Issue 4, pp 473–483 | Cite as

Carbon dioxide exchange in a cool-temperate evergreen coniferous forest over complex topography in Japan during two years with contrasting climates

  • Taku M. SaitohEmail author
  • Ichiro Tamagawa
  • Hiroyuki Muraoka
  • Na-Yeon M. Lee
  • Yuichiro Yashiro
  • Hiroshi Koizumi
JPR Symposium Carbon cycle process in East Asia


We investigated carbon dioxide (CO2) exchange and its environmental response during two years with contrasting climate (2006 and 2007) in a cool-temperate mixed evergreen coniferous forest dominated by Japanese cedar (Cryptomeria japonica) and Japanese cypress (Chamaecyparis obtusa). The study, which was conducted in a mountainous region of central Japan, used the eddy-covariance technique. Our results (crosschecked using the common u * approach and van Gorsel’s alternative approach) showed that annual gross primary production (GPP) and ecosystem respiration (RE) were at least 6% higher in the dry year than in the wet year, whereas net ecosystem exchange (NEE) was similar in both years. Without soil water stress, strong light stress or seasonality of plant area index during most of the study period, the forest had high metabolic activity. GPP and RE differed greatly between the two years, especially in spring (April–May) and summer (July–September), respectively. The spring GPP difference (>20%) was influenced by different winter air temperatures and snow melt timing, which controlled photosynthetic capacity in spring, and by different spring light intensities. The annual NEE differed depending on the evaluation method used, but the mean 2-year NEE estimated by the u * threshold approach [−3.39 ± 0.11 (SD) MgC ha−1 year−1] appears more reasonable in comparison with results from other forests.


AsiaFlux TKC site Eddy-covariance Environmental response of CO2 flux Japanese cedar Japanese cypress Mountainous region 



We thank Mr. K. Kurumado and Mr. Y. Miyamoto of the River Basin Research Center, Gifu University, for their support at the Takayama Field Station. Thanks are also due to Prof. T. Ohtsuka of Gifu University, Dr. H. Kondo of AIST, and anonymous reviewers for thoughtful suggestions. We also thank the forest owners at the TKC site for their permission to construct the flux tower and install various measurement systems. This work was supported by the JSPS 21st Century COE program “Satellite Ecology” at Gifu University and the JSPS-KOSEF-NSFC A3 Foresight Program. T.M.S. is grateful for the financial support received from the Ministry of Education, Culture, Sports, Science and Technology of Japan, Grant-in-Aid for Young Scientists (B), no. 18780113 to T.S. and Grant-in-Aid for Scientific Research (A), no. 21241009 to H.K.

Supplementary material

10265_2009_308_MOESM1_ESM.pdf (53 kb)
Supplementary material (PDF 53 kb)


  1. Aires MLI, Pio CA, Pereira JS (2008) Carbon dioxide exchange above a Mediterranean C3/C4 grassland during two climatologically contrasting years. Glob Change Biol 14:539–555CrossRefGoogle Scholar
  2. Aubinet M, Chermanne B, Vandenhaute M, Longdoz B, Yernaux M, Laitat E (2001) Long term carbon dioxide exchange above a mixed forest in the Belgian Ardennes. Agric For Meteorol 108:293–315CrossRefGoogle Scholar
  3. Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Glob Change Biol 9:479–492CrossRefGoogle Scholar
  4. Baldocchi DD (2008) ‘Breathing’ of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Aust J Bot 56:1–26CrossRefGoogle Scholar
  5. Baldocchi DD, Falge E, Gu LH, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee XH, Malhi Y, Meyers T, Munger W, Oechel W, Paw UKT, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001) FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc 82:2415–2434CrossRefGoogle Scholar
  6. Barford CC, Wofsy SC, Goulden ML, Munger JW, Pyle EH, Urbanski SP, Hutyra L, Saleska SR, Fitzjarrald D, Moore K (2001) Factors controlling long- and short-term sequestration of atmospheric CO2 in a mid-latitude forest. Science 294:1688–1691CrossRefPubMedGoogle Scholar
  7. Black TA, Hartog GD, Neumann HH, Blanken PD, Yang PC, Russell C, Nesic Z, Lee X, Chen SG, Staebler R, Novak MD (1996) Annual cycles of water vapour and carbon dioxide fluxes in and above a boreal aspen forest. Glob Change Biol 2:219–229CrossRefGoogle Scholar
  8. Black TA, Chen WJ, Barr AG, Arain MA, Chen Z, Nesic Z, Hogg EH, Neumann HH, Yang PC (2000) Increased carbon sequestration by a boreal deciduous forest in years with a warm spring. Geophys Res Lett 27:1271–1274CrossRefGoogle Scholar
  9. Black K, Bolger AT, Davis AP, Nieuwenhuis AM, Reidy B, Saiz AG, Tobin AB, Osborne AB (2007) Inventory and eddy covariance-based estimates of annual carbon sequestration in a Sitka spruce (Picea sitchensis (Bong.) Carr.) forest ecosystem. Eur J For Res 126:167–178Google Scholar
  10. Curtis PS, Hanson PJ, Bolstad P, Barford C, Randolph JC, Schmid HP, Wilson KB (2002) Biometric and eddy-covariance based estimates of annual carbon storage in five eastern North American deciduous forests. Agric For Meteorol 113:3–19CrossRefGoogle Scholar
  11. Ehman JL, Schmid HP, Grimmond CSB, Randolph JC, Hanson PJ, Wayson CA, Cropley FD (2002) An initial intercomparison of micrometeorological and ecological inventory estimates of carbon sequestration in a mid-latitude deciduous forest. Glob Change Biol 8:575–589CrossRefGoogle Scholar
  12. Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grunwald T, Hollinger D, Jensen NO, Katul G, Keronen P, Kowalski A, Lai CT, Law BE, Meyers T, Moncrieff J, Moors E, Munger JW, Pilegaard K, Rannik U, Rebmann C, Suyker A, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K, Wofsy S (2001) Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric For Meteorol 107:43–69CrossRefGoogle Scholar
  13. Gough CM, Vogel CS, Schmid HP, Su H-B, Curtis PS (2008) Multi-year convergence of biometric and meteorological estimates of forest carbon storage. Agric For Meteorol 148:158–170CrossRefGoogle Scholar
  14. Goulden ML, Daube BC, Fan S-M, Sutton DJ, Bazzaz A, Munger JW, Wofsy SC (1997) Physiological responses of a black spruce forest to weather. J Geophys Res 102:28987–28996CrossRefGoogle Scholar
  15. Granier A, Ceschia E, Damesin C, Dufrene E, Epron D, Gross P, Lebaube S, Dantec VL, Goff NL, Lemoine D, Lucot E, Ottorini JM, Pontailler JY, Saugier B (2000) The carbon balance of a young beech forest. Funct Ecol 14:312–325CrossRefGoogle Scholar
  16. Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000) Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48:115–146CrossRefGoogle Scholar
  17. Hirano T, Hirata R, Fujinuma Y, Saigusa N, Yamamoto S, Harazono Y, Takada M, Inukai K, Inoue G (2003) CO2 and water vapor exchange of a larch forest in northern Japan. Tellus B 55:244–257CrossRefGoogle Scholar
  18. Hirata R, Hirano T, Saigusa N, Fujinuma Y, Inukai K, Kitamori Y, Yamamoto S (2007) Seasonal and inter-annual variations in carbon dioxide exchange of a temperate larch forest. Agric For Meteorol 147:110–124CrossRefGoogle Scholar
  19. Hirata R, Saigusa N, Yamamoto S, Ohtani Y, Ide R, Asanuma J, Gamo M, Hirano T, Kondo H, Kosugi Y, Li S-G, Nakai Y, Takagi K, Tani M, Wang H (2008) Spatial distribution of carbon balance in forest ecosystems across East Asia. Agric For Meteorol 148:761–775CrossRefGoogle Scholar
  20. Ito A (2008) The regional carbon budget of East Asia simulated with a terrestrial ecosystem model and validated using AsiaFlux data. Agric For Meteorol 148:738–747CrossRefGoogle Scholar
  21. Japan FAO Association (1997) Forests and forestry in Japan, 2nd edn. Japan FAO Association, TokyoGoogle Scholar
  22. Jarvis PG, Massheder JM, Hale SE, Moncrieff JB, Rayment M, Scott SL (1997) Seasonal variation of carbon dioxide, water vapor, and energy exchanges of a boreal black spruce forest. J Geophys Res 102:28953–28966CrossRefGoogle Scholar
  23. Jones HG (1992) Plants and microclimate, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  24. Kato T, Tang Y (2008) Spatial variability and major controlling factors of CO2 sink strength in Asian terrestrial ecosystems: evidence from eddy covariance data. Glob Change Biol 14:1–16CrossRefGoogle Scholar
  25. Kolari P, Pumpanen J, Rannik U, Ilvesniemi H, Hari P, Berninger F (2004) Carbon balance of different aged Scots pine forests in Southern Finland. Glob Change Biol 10:1106–1119CrossRefGoogle Scholar
  26. Kominami Y, Miyama T, Tamai K, Nobuhiro T, Goto Y (2003) Characteristics of CO2 flux over a forest on complex topography. Tellus B 55:313–321CrossRefGoogle Scholar
  27. Kominami Y, Jomura M, Dannoura M, Goto Y, Tamai K, Miyama T, Kanazawa Y, Kaneko S, Okumura M, Misawa N, Hamada S, Sasaki T, Kimura H, Ohtani Y (2008) Biometric and eddy-covariance-based estimates of carbon balance for a warm-temperate mixed forest in Japan. Agric For Meteorol 148:723–737CrossRefGoogle Scholar
  28. Kosugi Y, Tanaka H, Takanashi S, Matsuo N, Ohte N, Shibata S, Tani M (2005) Three years of carbon and energy fluxes from Japanese evergreen broad-leaved forest. Agric For Meteorol 132:329–343CrossRefGoogle Scholar
  29. Kosugi Y, Takanashi S, Ohkubo S, Matsuo N, Tani M, Mitani T, Tsutsumi D, Nik AR (2008) CO2 exchange of a tropical rain forest at Pasoh in Peninsular Malaysia. Agric For Meteorol 148:439–452Google Scholar
  30. Kumagai T, Tateishi M, Shimizu S, Otsuki K (2008) Transpiration and canopy conductance at two slope positions in a Japanese cedar forest watershed. Agric For Meteorol 148:1444–1455CrossRefGoogle Scholar
  31. Lee X, Finnigan J, Paw UKT (2004) Coordinate systems and flux bias error. In: Lee X, Massman W, Law B (eds) Handbook of micrometeorology: a guide for surface flux measurement and analysis Kluwer, Dordrecht, The Netherlands, pp 33–66Google Scholar
  32. Lee M-S, Lee J-S, Koizumi H (2008) Temporal variation in CO2 efflux from soil and snow surfaces in a Japanese cedar (Cryptomeria japonica) plantation, central Japan. Ecol Res 23:777–785CrossRefGoogle Scholar
  33. Li S-G, Asanuma J, Kotani A, Eugster W, Davaa G, Oyunbaatar D, Sugita M (2005) Year-round measurements of net ecosystem CO2 flux over a montane larch forest in Mongolia. J Geophys Res 110:D09303. doi: 10.1029/2004JD005453 CrossRefGoogle Scholar
  34. Lloyd J, Taylor JA (1994) On the temperature dependence of soil respiration. Funct Ecol 8:315–323CrossRefGoogle Scholar
  35. Misson L, Baldocchi DD, Black TA, Blanken PD, Brunet Y, Curiel Yuste JC, Dorsey JR, Falk M, Granier A, Irvine MR, Jarosz N, Lamaud E, Launiainen S, Law BE, Longdoz B, Loustau D, McKay M, Paw UKT, Vesala T, Vickers D, Wilson KB, Goldstein AH (2007) Partitioning forest carbon fluxes with overstory and understory eddy-covariance measurements: a synthesis based on FLUXNET data. Agric For Meteorol 144:14–31CrossRefGoogle Scholar
  36. Mizoguchi Y, Miyata A, Ohtani Y, Hirata R, Yuta S (2009) A review of tower flux observation sites in Asia. J For Res 14:1–9CrossRefGoogle Scholar
  37. Monsi M, Saeki T (1953) Über den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung für die Stoffproduktion. Jpn J Bot 14:22–52Google Scholar
  38. Muraoka H, Koizumi H (2009) Satellite Ecology (SATECO)-linking ecology, remote sensing and micrometeorology, from plot to regional scale, for the study of ecosystem structure and function. J Plant Res 122:3–20CrossRefPubMedGoogle Scholar
  39. Ohtsuka T, Mo W, Satomura T, Inatomi M, Koizumi H (2007) Biometric based carbon flux measurements and Net Ecosystem Production (NEP) in a temperate deciduous broad-leaved forest beneath a flux tower. Ecosystems 10:324–334CrossRefGoogle Scholar
  40. Ohtsuka T, Lee M-S, Yashiro Y, Negishi M, Koizumi H (2008) Net primary production and carbon allocation patterns in red pine, Japanese cedar, and broadleaved forests beneath flux towers. In: Proceedings of 2nd International Symposium of 21st Century COE Program “Satellite Ecology”. Gifu University, pp 61–64Google Scholar
  41. Owen KE, Tenhunen J, Reichstein M, Wang Q, Falge E, Geyer R, Xiao X, Stoy P, Ammann C, Arain A, Aubinet M, Aurela M, Bernhofer C, Chojnicki BH, Granier A, Gruenwald T, Hadley J, Heinesch B, Hollinger D, Knohl A, Kutsch W, Lohila A, Meyers T, Moors E, Moureaux C, Pilegaard K, Saigusa N, Verma S, Vesala T, Vogel C (2007) Linking flux network measurements to continental scale simulations: ecosystem CO2 exchange capacity under non-water-stressed conditions. Glob Change Biol 13:734–760Google Scholar
  42. Saigusa N, Yamamoto S, Murayama S, Kondo H, Nishimura S (2002) Gross primary production and net ecosystem exchange of a cool-temperate deciduous forest estimated by the eddy covariance method. Agric For Meteorol 112:203–215CrossRefGoogle Scholar
  43. Saigusa N, Yamamoto S, Murayama S, Kondo H (2005) Inter-annual variability of carbon budget components in an AsiaFlux forest site estimated by long-term flux measurements. Agric For Meteorol 134:4–16CrossRefGoogle Scholar
  44. Saigusa N, Yamamoto S, Hirata R, Ohtani Y, Ide R, Asanuma J, Gamo M, Hirano T, Kondo H, Kosugi Y, Li S-G, Nakai Y, Takagi K, Tani M, Wang H (2008) Temporal and spatial variations in the seasonal patterns of CO2 flux in boreal, temperate, and tropical forests in East Asia. Agric For Meteorol 148:700–713CrossRefGoogle Scholar
  45. Saitoh TM, Kumagai T, Sato Y, Suzuki M (2005) Carbon dioxide exchange over a Bornean tropical rainforest. J Agric Meteorol 60:553–556Google Scholar
  46. Sawano S, Komatsu H, Suzuki M (2005) Differences in annual precipitation amounts between forested area, agricultural area, and urban area in Japan (in Japanese with English abstract). J Jpn Soc Hydrol Water Resour 18:435–440CrossRefGoogle Scholar
  47. Schelhaas MJ, Nabuurs GJ, Jans W, Moors E, Sabate S, Daamen WP (2004) Closing the carbon budget of a Scots pine forest in the Netherlands. Clim Change 67:309–328CrossRefGoogle Scholar
  48. Schuepp PH, Leclerc MY, MacPherson JI, Desjardins RL (1990) Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation. Boundary Layer Meteorol 50:355–373CrossRefGoogle Scholar
  49. Spitters CJT, Toussaint HAJM, Goudriaan J (1986) Separating the diffuse and direct components of global radiation and its implications for modeling canopy photosynthesis part I. Components of incoming radiation. Agric For Meteorol 38:217–229CrossRefGoogle Scholar
  50. Takanashi S, Kosugi Y, Tanaka Y, Yano M, Katayama T, Tanaka H, Tani M (2005) CO2 exchange in a temperate Japanese cypress forest compared with that in a cool-temperate deciduous broad-leaved forest. Ecol Res 20:313–324CrossRefGoogle Scholar
  51. van Gorsel E, Leuning L, Cleugh HA, Keith H, Suni T (2007) Nocturnal carbon efflux: reconciliation of eddy covariance and chamber measurements using an alternative to the u *-threshold filtering technique. Tellus B 59:397–403CrossRefGoogle Scholar
  52. Wilson K, Goldsten A, Falge E, Aubinet M, Baldocchi D, Berbigier P, Ceulenmans R, Dolman H, Field C, Grelle A, Ibrom A, Law BE, Lowalski A, Meyers T, Moncrieff J, Monson R, Oechel W, Tenhinen J, Valentini R, Verma S (2002) Energy balance closure at FLUXNET sites. Agric For Meteorol 113:223–243CrossRefGoogle Scholar
  53. Yashiro Y, Lee N-Y, Ohtsuka T, Shizu Y, Saitoh TM, Koizumi H (2010) Biometric based estimation of net ecosystem production (NEP) in a mature Japanese cedar (Cryptomeria japonica) plantation beneath a flux tower. J Plant Res (submitted in this special issue)Google Scholar
  54. Zhang JH, Han SJ, Yu GR (2006) Seasonal variation in carbon dioxide exchange over a 200-year-old Chinese broad-leaved Korean pine mixed forest. Agric For Meteorol 137:150–165CrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer 2010

Authors and Affiliations

  • Taku M. Saitoh
    • 1
    Email author
  • Ichiro Tamagawa
    • 1
  • Hiroyuki Muraoka
    • 1
  • Na-Yeon M. Lee
    • 2
  • Yuichiro Yashiro
    • 1
  • Hiroshi Koizumi
    • 3
  1. 1.River Basin Research CenterGifu UniversityGifuJapan
  2. 2.BK21 Environmental and Ecological Engineering Research TeamKorea UniversitySeoulKorea
  3. 3.Department of Biology, Faculty of EducationWaseda UniversityTokyoJapan

Personalised recommendations