Advertisement

Journal of Plant Research

, 122:585 | Cite as

Genetic population structure of Osmunda japonica, rheophilous Osmunda lancea and their hybrids

  • Yoko YatabeEmail author
  • Chie Tsutsumi
  • Yumiko Hirayama
  • Keigo Mori
  • Noriaki Murakami
  • Masahiro Kato
Regular Paper

Abstract

Rheophilous Osmunda lancea often hybridizes with a dryland ally, Osmunda japonica, to produce O. × intermedia, forming zonation in riverbanks and the adjacent dryland along flooding frequency clines. This study examined the genetic structure of populations consisting of O. × intermedia and the two parental species by analyzing ten nuclear DNA markers [six cleaved amplified polymorphic sequence (CAPS) markers and three simple sequence repeat (SSR) markers developed from an expressed sequence tag (EST) library, and the sequence of the glyceraldehyde-3-phosphate dehydrogenase gene GapCp] and chloroplast DNA sequences. The results suggest that the nuclear genes of O. japonica and O. lancea are genetically differentiated despite shared polymorphism in their chloroplast DNA sequences. This discrepancy may be attributable to natural selection and recent introgression, although it is not evident if introgression occurs between O. japonica and O. lancea in the examined populations. Our findings of putative F2 hybrids in O. × intermedia support its partial reproducibility, and also suggest that formation of later-generation hybrids generates morphological variation in O. × intermedia. O. lancea plants collected from geographically distant localities were genetically very similar, and it is suggested that O. lancea originated monotopically.

Keywords

Rheophyte Osmunda Hybrid Expressed sequence tag Simple sequence repeat Cleaved amplified polymorphic sequence Genetic population structure 

Notes

Acknowledgments

We thank S. Akiyama, A. Ebihara, G. Kokubugata, S. Matsumoto and T. Minamitani for providing materials used in this study. We also thank N. Katayama and S. Koi for their collaborative field work and, M. Takamiya, M. Tanaka and S. Kobayashi for information on localities of Osmunda × intermedia and O. lancea. This study was supported by grants-in-aid numbers 1806295 (to Y.Y.) and 20247006 (to M.K.) from the Japan Society for the Promotion of Science.

References

  1. Altshul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z (1997) Gapped Blast and PSI-BlAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefGoogle Scholar
  2. Anderson EC, Thompson EA (2002) A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160:1217–1229PubMedGoogle Scholar
  3. Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, Kidd JR, Cavalli-Sforza LL (1994) High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368:455–457CrossRefPubMedGoogle Scholar
  4. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedGoogle Scholar
  5. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefPubMedGoogle Scholar
  6. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  7. Funk DJ, Omland KE (2003) Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annu Rev Ecol Evol Syst 34:397–423CrossRefGoogle Scholar
  8. Gottlieb LD (1972) Levels of confidence in analysis of hybridization in plants. Ann Mo Bot Gard 59:435–446CrossRefGoogle Scholar
  9. Hasebe M, Oumori T, Nakazawa M, Iwatsuki K, Kato M (1994) rbcL gene sequences gave new clue to evolutionary lineage for leptosporangiate ferns. Proc Natl Acad Sci USA 91:5730–5734CrossRefPubMedGoogle Scholar
  10. Heiser CB (1973) Introgression re-examined. Bot Rev 39:347–366CrossRefGoogle Scholar
  11. Hey J, Won YJ, Sivasundar A, Nielsen R, Markert JA (2004) Using nuclear haplotypes with microsatellites to study gene flow between recently separated Cichlid species. Mol Ecol 13:909–919CrossRefPubMedGoogle Scholar
  12. Imaichi R, Kato M (1992) Comparative leaf development of Osmunda lancea and O. japonica (Osmundaceae): heterochronic origin of rheophytic stenophylly. Bot Mag Tokyo 105:199–213CrossRefGoogle Scholar
  13. Kato M (2007) Distribution of Osmundaceae. Bull Natl Mus Nat Sci Ser B 33:81–90Google Scholar
  14. Lexer C, Kremer A, Petit RJ (2006) Shared alleles in sympatric oaks: recurrent gene flow is a more parsimonious explanation than ancestral polymorphism. Mol Ecol 15:2007–2012CrossRefPubMedGoogle Scholar
  15. Martinsen GD, Whitham TG, Turek RJ, Keim P (2001) Hybrid populations selectively filter gene introgression between species. Evolution 55:1325–1335PubMedGoogle Scholar
  16. Metzgar JS, Skog JE, Zimmer EA, Pryer KM (2008) The paraphyly of Osmunda is confirmed by phylogenetic analyses of seven plastid loci. Syst Bot 33:31–36CrossRefGoogle Scholar
  17. Muir G, Schlotterer C (2005) Evidence for shared ancestral polymorphism rather than recurrent gene flow at microsatellite loci differentiating two hybridizing oaks (Quercus spp.). Mol Ecol 14:549–561CrossRefPubMedGoogle Scholar
  18. Ohwi J (1957) Flora of Japan. Pteridophyta. Shibundo, TokyoGoogle Scholar
  19. Patterson N, Richter DJ, Gnerre S, Lander ES, Reich D (2006) Genetic evidence for complex speciation of humans and chimpanzees. Nature 441:1103–1108CrossRefPubMedGoogle Scholar
  20. Petersen J, Brinkmann H, Cerff R (2003) Origin, evolution, and metabolic role of a novel glycolytic GAPDH enzyme recruited by land plant plastids. J Mol Evol 57:16–26CrossRefPubMedGoogle Scholar
  21. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  22. Rieseberg LH, Wendel J (1993) Introgression and its consequences in plants. In: Harrison R (ed) Hybrid zones and the evolutionary process. Oxford University Press, Oxford, pp 70–114Google Scholar
  23. Rieseberg LH, Whitton J, Linder CR (1996) Molecular marker incongruence in plant hybrid zones and phylogenetic trees. Acta Bot Neerl 45:243–262Google Scholar
  24. Shimura Y (1964) Observations on the fertile fronds of Osmunda lancea var. latipinnula. J Jpn Bot 39:242–246Google Scholar
  25. Shimura Y (1972) Study of reproduction of Osmunda × intermedia Sugimoto. J Geobot 20:38–42Google Scholar
  26. Shimura Y, Matsumoto S (1977) On the chromosome association in meiosis of Osmunda × intermedia. J Jpn Bot 52:377–378Google Scholar
  27. Swofford DL (2002) PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods), version 4. Sinauer Associates, SunderlandGoogle Scholar
  28. Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109CrossRefPubMedGoogle Scholar
  29. Tagawa M (1959) Colored illustrations of the Japanese Pteridophyta. Hoikusha, OsakaGoogle Scholar
  30. Tsutsumi C, Kato M (2005) Molecular phylogenetic study on Davalliaceae. Fern Gaz 17:147–162Google Scholar
  31. van Steennis CGGJ (1981) Rheophytes of the World. Sijthoff & Noordhoff, Alphen aan den RijnGoogle Scholar
  32. van Steennis CGGJ (1987) Rheophytes of the world: supplement. Allertonia 4:267–330Google Scholar
  33. Yatabe Y, Nishida H, Murakami N (1999) Phylogeny of Osmundaceae inferred from rbcL nucleotide sequences and comparison to the fossil evidence. J Plant Res 112:397–404CrossRefGoogle Scholar
  34. Yatabe Y, Murakami N, Iwatsuki K (2005) Claytosmunda; a new subgenus of Osmunda (Osmundaceae). Acta Phytotax Geobot 56:127–128Google Scholar

Copyright information

© The Botanical Society of Japan and Springer 2009

Authors and Affiliations

  • Yoko Yatabe
    • 1
    Email author
  • Chie Tsutsumi
    • 1
  • Yumiko Hirayama
    • 1
  • Keigo Mori
    • 2
  • Noriaki Murakami
    • 2
  • Masahiro Kato
    • 1
  1. 1.Department of BotanyNational Museum of Nature and ScienceTsukubaJapan
  2. 2.Makino HerbariumTokyo Metropolitan UniversityHachiojiTokyoJapan

Personalised recommendations