Skip to main content
Log in

Phylogenetic affinity of arbuscular mycorrhizal symbionts in Psilotum nudum

Journal of Plant Research Aims and scope Submit manuscript

Abstract

Many lineages of land plants (from lycopsids to angiosperms) have non-photosynthetic life cycle phases that involve obligate mycoheterotrophic arbuscular mycorrhizal (AM) associations where the plant host gains organic carbon through glomalean symbionts. Our goal was to isolate and phylogenetically identify the AM fungi associated with both the autotrophic and underground mycoheterotrophic life cycle phases of Psilotum nudum. Phylogenetic analyses recovered 11 fungal phylotypes in four diverse clades of Glomus A that form AM associations with P. nudum mycoheterotrophic gametophytes and autotrophic sporophytes, and angiosperm roots found in the same greenhouse pots. The correspondence of identities of AM symbionts in P. nudum sporophytes, gametophytes and neighboring angiosperms provides compelling evidence that photosynthetic heterospecific and conspecific plants can serve as the ultimate sources of fixed carbon for mycoheterotrophic gametophytes of P. nudum, and that the transfer of carbon occurs via shared fungal networks. Moreover, broader phylogenetic analyses suggest greenhouse Psilotum populations, like field-surveyed populations of mycoheterotrophic plants, form AM associations with restricted clades of Glomus A. The phylogenetic affinities and distribution of Glomus A symbionts indicate that P. nudum greenhouse populations have the potential to be exploited as an experimental system to further study the physiology, ecology and evolution of mycoheterotrophic AM associations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Anderson IC, Cairney JWG (2004) Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environ Microbiol 6:769–779

    Article  CAS  PubMed  Google Scholar 

  • Antoniolli ZI, Schachtman DP, Ophel-Keller K, Smith SE (2000) Variation in rDNA its sequences in Glomus mosseae and Gigaspora margarita spores from a permanent pasture. Mycol Res 104:708–715

    Article  CAS  Google Scholar 

  • Bidartondo MI (2005) The evolutionary ecology of myco-heterotrophy. New Phytol 167:335–352

    Article  PubMed  Google Scholar 

  • Bidartondo MI, Redecker D, Hijri I, Wiemken A, Bruns TD, Dominquez L, Sersic A, Leake JR, Read DJ (2002) Epiparasitic plants specialized on arbuscular mycorrhizal fungi. Nature 419:389–392

    Article  CAS  PubMed  Google Scholar 

  • Bidartondo MI, Burghardt B, Gebauer G, Bruns TD, Read DJ (2004) Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proc R Soc Lond B Biol Sci 271:1799–1806

    Article  CAS  Google Scholar 

  • Bierhorst DW (1953) Structure and development of the gametophyte of Psilotum nudum. Am J Bot 40:649–658

    Article  Google Scholar 

  • Bierhorst DW (1954a) The gametangia and embryo of Psilotum nudum. Am J Bot 41:274–281

    Article  Google Scholar 

  • Bierhorst DW (1954b) The subterranean sporophytic axes of Psilotum nudum. Am J Bot 5:72–78

    Google Scholar 

  • Bierhorst DW (1955) A note on spore germination in Psilotum nudum. Va J Sci 6:96

    Google Scholar 

  • Bierhorst DW (1968) On the Stromatopteridaceae (fam nov.) and the Psilotaceae. Phytomorphology 18:232–268

    Google Scholar 

  • Bierhorst DW (1971) Morphology of vascular plants. Macmillan, New York

    Google Scholar 

  • Bierhorst DW (1977) Systematic position of Psilotum and Tmesipteris. Brittonia 29:3–13

    Article  Google Scholar 

  • Bower FO (1935) Primitive land plants: also known as the archegoniate. Hafner, New York

    Google Scholar 

  • Brundrett MC (2002) Tansley review no. 134. Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    Article  Google Scholar 

  • Brundrett MC (2004) Diversity and classification of mycorrhizal associations. Biol Rev 79:473–495

    Article  PubMed  Google Scholar 

  • Carafa A, Duckett JG, Ligrone R (2003) Subterranean gametophytic axes in the primitive liverwort Haplomitrium harbor a unique type of endophytic association with aseptate fungi. New Phytol 160:185–197

    Article  Google Scholar 

  • Carey EV, Marler MJ, Callaway RM (2004) Mycorrhizae transfer carbon from a native grass to an invasive weed: evidence from stable isotopes and physiology. Plant Ecol 172:133–141

    Article  Google Scholar 

  • Clapp JP, Young JPW, Merryweather JH, Fitter AH (1995) Diversity of fungal symbionts in arbuscular mycorrhizas from a natural community. New Phytol 130:259–265

    Article  Google Scholar 

  • DeSalle R, Gilbert G, Wheeler W (2002) Techniques in molecular systematics and evolution. Birkhauser, Basel

    Google Scholar 

  • Dominguez L, Sersic A, Melville L, Peterson RL (2005) ‘Prepackaged symbioses’: propagules on roots of the myco-heterotrophic plant Arachnitis uniflora. New Phytol 169:191–198

    Article  Google Scholar 

  • Duckett JG, Ligrone R (1992) A light and electron-microscope study of the fungal endophytes in the sporophyte and gametophyte of Lycopodium-Cernuum with observations on the gametophyte sporophyte junction. Can J Bot 70:58–72

    Article  Google Scholar 

  • Duckett JG, Ligrone R (2005) A comparative cytological analysis of fungal endophytes in the sporophyte rhizomes and vascularized gametophytes of Tmesipteris and Psilotum. Can J Bot 83:1443–1456

    Article  Google Scholar 

  • Fitter AH, Graves JD, Watkins NK, Robinson D, Scrimgeour C (1998) Carbon transfer between plants and its control in networks of arbuscular mycorrhizas. Funct Ecol 12:406–412

    Article  Google Scholar 

  • Franke T, Beenken L, Doring M, Kocyan A, Agerer R (2006) Arbuscular mycorrhizal fungi of the Glomus-group A lineage (Glomerales; Glomeromycota) detected in myco-heterotrophic plants from tropical Africa. Mycol Prog 5:24–31

    Article  Google Scholar 

  • Gollotte A, van Tuinen D, Atkinson D (2004) Diversity of arbuscular mycorrhizal fungi colonising roots of the grass species Agrostis capillaris and Lolium perenne in a field experiment. Mycorrhiza 14:111–117

    Article  PubMed  Google Scholar 

  • Harrier LA (2001) The arbuscular mycorrhizal symbiosis: a molecular review of the fungal dimension. J Exp Bot 52:469–478

    CAS  PubMed  Google Scholar 

  • Harrison M (1998) Development of the arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol 1:360–365

    Article  CAS  PubMed  Google Scholar 

  • Harrison M (1999) Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annu Rev Plant Physiol 50:361–389

    Article  CAS  Google Scholar 

  • Hauk WD, Parks CR, Chase MW (2003) Phylogenetic studies of Ophioglossaceae: evidence from rbcl and trnL-F plastid DNA sequences and morphology. Mol Phylogenet Evol 28:131–151

    Article  CAS  PubMed  Google Scholar 

  • Hause B, Fester T (2005) Molecular and cell biology of arbuscular mycorrhizal symbiosis. Planta 221:184–196

    Article  CAS  PubMed  Google Scholar 

  • Helgason T, Fitter AH (2005) The ecology and evolution of the arbuscular mycorrhizal fungi. Mycologist 19:96–101

    Article  Google Scholar 

  • Hijri I, Sykorova Z, Oehl F, Ineichen K, Mader P, Wiemken A, Redecker D (2006) Communities of arbuscular mycorrhizal fungi in arable soils are not necessarily low in diversity. Mol Ecol 15:2277–2289

    Article  CAS  PubMed  Google Scholar 

  • Holloway JE (1918) The prothallus and young plant of Tmesipteris. Trans Proc N Z Inst 50:1–44

    Google Scholar 

  • Holloway JE (1939) The gametophyte, embryo, and young rhizome of Psilotum triquetrum swartz. Ann Bot 53:313–319

    Google Scholar 

  • Huelsenbeck JF, Ronquist J (2001) MRBAYES: bayesian inference of phylogenetic trees. Bioinformatics 17:754

    Article  CAS  PubMed  Google Scholar 

  • Imhof S (1999a) Root morphology, anatomy and mycotrophy of the achlorophyllous Voyria aphylla (Jacq.) Pers. (Gentianaceae). Mycorrhiza 9:33–39

    Article  Google Scholar 

  • Imhof S (1999b) Subterranean structures and mycorrhiza of the achlorophyllous Burmannia tenella (Burmanniaceae). Can J Bot 77:637–643

    Article  Google Scholar 

  • Imhof S (2004) Morphology and development of the subterranean organs of the achlorophyllous Sciaphila polygyna (Triuridaceae). Bot J Linn Soc 146:295–301

    Article  Google Scholar 

  • Jansa JA, Mozafar S, Banke B, McDonald A, Frossard E (2002) Intra- and intersporal diversity of its rDNA sequences in Glomus intraradices assessed by cloning and sequencing, and by SSCP analysis. Mycol Res 106:670–681

    Article  CAS  Google Scholar 

  • Kaplan DR (1977) Morphological status of shoot systems of Psilotaceae. Brittonia 29:30–53

    Article  Google Scholar 

  • Kjoller R, Rosendahl S (2001) Molecular diversity of glomalean (arbuscular mycorrhizal) fungi determined as distinct Glomus specific DNA sequences from roots of field grown peas. Mycol Res 105:1027–1032

    Article  CAS  Google Scholar 

  • Kovacs GM, Balazs T, Penzes Z (2007) Molecular study of arbuscular mycorrhizal fungi colonizing the sporophyte of the eusporangiate rattlesnake fern (Botrychium virginianum,Ophiogloassaceae). Mycorrhiza 17:597–605

    Article  CAS  PubMed  Google Scholar 

  • Leake JR (1993) Tansley review no. 69. The biology of myco-heterotrophic (‘saprophytic’) plants. New Phytol 127:171–216

    Article  Google Scholar 

  • Leake JR (2004) Myco-heterotroph/epiparasitic plant interactions with ectomycorrhizal and arbuscular mycorrhizal fungi. Curr Opin Plant Biol 7:302–308

    Article  Google Scholar 

  • Leake JR, Cameron DD, Beerling DJ (2008) Fungal fidelity in the myco-heterotroph-to-autotroph life cycle of Lycopodiaceae: a case of parental nurture? New Phytol 177:572–576

    Article  PubMed  Google Scholar 

  • Ligrone R, Carafa A, Lumni E, Bianciotto V, Bonfante P, Duckett JG (2007) Glomeromycotean associations in liverworts: a molecular, cellular, and taxonomic analysis. Am J Bot 94:1756–1777

    Article  CAS  Google Scholar 

  • Opik M, Moora M, Liira J, Koljalg U, Zobel M, Sen R (2003) Divergent arbuscular mycorrhizal fungal communities colonize roots of Pulsatilla spp. in boreal Scots pine forest and grassland soils. New Phytol 160:581–593

    Article  Google Scholar 

  • Opik M, Moora M, Liira J, Zoebel M (2006) Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J Ecol 94:778–790

    Article  Google Scholar 

  • Peterson RL, Howarth MJ, Whittier DP (1981) Interactions between a fungal endophyte and gametophyte cells in Psilotum-Nudum. Can J Bot 59:711–720

    Article  Google Scholar 

  • Pfeffer PE, Douds DD, Bucking H, Schwartz DP, Shachar-Hill Y (2004) The fungus does not transfer carbon to or between roots in an arbuscular mycorrhizal symbiosis. New Phytol 163:617–627

    Article  Google Scholar 

  • Pryer KM, Schneider H, Smith AR, Cranfill R, Wolf P, Hunt JS, Sipes SD (2001) Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature 409:618–621

    Article  CAS  PubMed  Google Scholar 

  • Pryer KM, Schuettpelz E, Wolf PG, Schneider H, Smith AR, Cranfill R (2004) Phylogeny and evolution of ferns (monilophytes) with a focus on the early leptosporangiate divergences. Am J Bot 91:1582–1598

    Article  CAS  Google Scholar 

  • Read DJ (1998) Plants on the web. Nature 396:22–23

    Article  CAS  Google Scholar 

  • Read DJ, Duckett JG, Francis R, Ligrone R, Russell A (2000) Symbiotic fungal associations in ‘lower’ land plants. Philos Trans R Soc Lond B Biol Sci 355:815–831

    Article  CAS  PubMed  Google Scholar 

  • Redecker DH, Raab P (2006) Phylogeny of the Glomeromycota (arbuscular mycorrhizal fungi): recent developments and new markers. Mycologia 98:885–895

    Article  PubMed  Google Scholar 

  • Rosendahl S, Stukenbrock EH (2004) Community structure of arbuscular mycorrhizal fungi in undisturbed vegetation revealed by analyses of LSU rDNA sequences. Mol Ecol 13:3179–3186

    Article  CAS  PubMed  Google Scholar 

  • Russell J, Bulman S (2005) The liverwort Marchantia foliacea forms specialized symbiosis with arbuscular mycorrhizal fungi in the genus Glomus. New Phytol 165:567–579

    Article  CAS  PubMed  Google Scholar 

  • Schmid E, Oberwinkler F (1994) Light and electron-microscopy of the host- fungus interaction in the achlorophyllous gametophyte of Botrychium lunaria. Can J Bot 72:182–188

    Article  Google Scholar 

  • Schmid E, Oberwinkler F (1996) Light and electron microscopy of a distinctive VA mycorrhiza in mature sporophytes of Ophioglossum reticulatum. Mycol Res 100:843–849

    Article  Google Scholar 

  • Schussler AH, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1301–1413

    Google Scholar 

  • Schwarzott D, Schussler A (2001) A simple and reliable method for SSU rRNA gene DNA extraction, amplification, and cloning from single AM fungal spores. Mycorrhiza 10:203–207

    Article  CAS  Google Scholar 

  • Schwarzott D, Walker C, Schussler A (2001) Glomus, the largest genus of the arbuscular mycorrhizal fungi (Glomales), is nonmonophyletic. Mol Phylogenet Evol 21:190–197

    Article  CAS  PubMed  Google Scholar 

  • Simard SW, Perry DA, Jones MD, Myrold DD, Durall DM, Molina R (1997) Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 388:579–582

    Article  CAS  Google Scholar 

  • Simon L, Lalonde M, Bruns T (1992) Specific amplification of 18S fungal ribosomal genes from vesicular arbuscular endomycorrhizal fungi colonizing roots. Appl Environ Microbiol 58:291–295

    CAS  PubMed  Google Scholar 

  • Simon L, Levesque RC, Lalonde M (1993) Identification of endomycorrhizal fungi colonizing roots by fluorescent single-strand conformation polymorphism-polymerase chain reaction. Appl Environ Microbiol 59:3011–3015

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, San Diego

    Google Scholar 

  • Smith FA, Smith SE (1997) Tansley review no. 96. Structural diversity in (vesicular)-arbuscular mycorrhizal symbioses. New Phytol 137:373–388

    Article  Google Scholar 

  • Smith FA, Smith SE (1996) Mutualism and parasitism: diversity in function and structure in the ''arbuscular'' (VA) mycorrhizal symbiosis. Adv Bot Res 22:1–43

    Article  Google Scholar 

  • Swofford DL (2002) Paup*: phylogenetic analysis using parsimony. Sinauer, Sunderland

    Google Scholar 

  • Takiguchi Y, Imaichi R, Kato M (1997) Cell division patterns in the apices of subterranean axis and aerial shoot of Psilotum nudum (Psilotaceae): morphological and phylogenetic implications for the subterranean axis. Am J Bot 84:588–596

    Article  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Vandenkoornhuyse P, Husband R, Daniell TJ, Watson IJ, Duck JM, Fitter AH, Young JPW (2002) Arbuscular mycorrhizal community composition associated with two plant species in a grassland ecosystem. Mol Ecol 11:1555–1564

    Article  CAS  PubMed  Google Scholar 

  • Walker C, Schussler A (2004) Nomenclatural clarifications and new taxa in the Glomeromycota. Mycol Res 108:981–982

    Article  Google Scholar 

  • Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    Article  CAS  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sminsk JJ, White TJ (eds) PCR protocols, a guide to methods and applications. Academic, San Diego, pp 315–322

    Google Scholar 

  • Whittier DP (1973) Germination of Psilotum spores in axenic culture. Can J Bot 51:2000–2001

    Article  Google Scholar 

  • Whittier DP (1985) Spore germination in Psilotum. Proc R Soc Edinburgh 86:465–466

    Google Scholar 

  • Whittier DP (1988) Dark-grown Psilotum. Am Fern J 78:109–116

    Article  Google Scholar 

  • Whittier DP (1990) Effects of nitrogen-source on spore germination and gametophyte growth in Psilotum. Bot Gaz 151:50–53

    Article  CAS  Google Scholar 

  • Whittier DP, Braggins JE (1994) Spore germination in the Psilotaceae. Can J Bot 72:688–692

    Article  Google Scholar 

  • Whittier DP, Given JE (1987) The germination of Tmesipteris spores. Can J Bot 65:1770–1772

    Article  Google Scholar 

  • Whittier DP, Peterson RL (1980) Archegonial opening in Psilotum. Can J Bot 58:1905–1907

    Google Scholar 

  • Winther JL, Friedman WE (2007) Arbuscular mycorrhizal symbionts in Botrychium (Ophioglossaceae). Am J Bot 94:1248–1255

    Article  CAS  Google Scholar 

  • Winther JL, Friedman WE (2008) Arbuscular mycorrhizal symbionts in Lycopodiaceae. New Phytol 177:790–801

    Article  CAS  PubMed  Google Scholar 

  • Wu BY, Nara K, Hogetsu T (2001) Can C-14-labeled photosynthetic products move between Pinus densiflora seedlings linked by ectomycorrhizal mycelia? New Phytol 149:137–146

    Article  CAS  Google Scholar 

  • Wu BY, Nara K, Hogetsu T (2002) Spatiotemporal transfer of carbon-14-labelled photosynthate from ectomycorrhizal Pinus densiflora seedlings to extraradical mycelia. Mycorrhiza 12:83–88

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are forever grateful to David Bierhorst who shared with us his knowledge of the gametophyte producing Psilotum populations at Amherst. The authors wish to thank Teddi BLoniarz, Monica Johnson and the entire staff at the greenhouses at the University of Massachusetts, Amherst for Psilotum collections. This research was supported by a NASA Astrobiology grant to W.E.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer L. Winther.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winther, J.L., Friedman, W.E. Phylogenetic affinity of arbuscular mycorrhizal symbionts in Psilotum nudum . J Plant Res 122, 485–496 (2009). https://doi.org/10.1007/s10265-009-0234-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-009-0234-8

Keywords

Navigation