Do ridge habitats contribute to pteridophyte diversity in tropical montane forests? A case study from southeastern Ecuador

Abstract

We address the question to which degree ridge habitats in tropical montane forests contribute to overall plant diversity by analysing patterns of pteridophyte (i.e. lycophytes and ferns) assemblages on ridges and slopes in three montane forest sites near Podocarpus National Park, Ecuador. The analyses, which involved 158 pteridophyte species (110 terrestrial, 96 epiphytic, 48 both) from 28 plots of 20 m × 20 m (or an equivalent of 400 m2), showed that more species were typical of one of the three study sites than of one of the two habitats (ridge/slope). As found in previous studies, alpha diversity on ridges was lower than on slopes, accounted for by the absence of numerous species that are found on slopes. Pteridophyte assemblages on ridges were more similar across study sites than those on slopes. Thus, unlike the structurally comparable (i.e. stunted, open) Amazonian forests, the studied montane ridge forests harbour fairly homogenous pteridophytes assemblages with very few specialised species. Our study implies that slope forests are of higher conservation priority for pteridophytes in the study region than ridge habitats. However, comparative studies are needed because other geographical regions and other groups of organisms may not share this pattern.

This is a preview of subscription content, log in to check access.

Fig. 1a,b
Fig. 2a,b
Fig. 3

References

  1. Beck E, Müller-Hohenstein K (2001) Analysis of undisturbed and disturbed tropical mountain forest ecosystems in Southern Ecuador. Die Erde 132:1–8

    Google Scholar 

  2. Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) (2008) Gradients in a tropical mountain ecosystem of ecuador. Ecological Studies, vol 198. Springer, Berlin

  3. Bussmann RW (2001) The montane forests of Reserva Biológica San Francisco (Zamora–Chinchipe, Ecuador). Vegetation zonation and natural regeneration. Die Erde 132:9–25

    Google Scholar 

  4. Bussmann RW (2002) Epiphyte diversity in a tropical Andean Forest—Reserva Biológica San Francisco, Zamora–Chinchipe, Ecuador. Ecotropica 7:43–59

    Google Scholar 

  5. Cody ML (1986) Diversity, rarity, and conservation in meditarranean-climate regions. In: Soulé M (ed) Conservation biology: the science of scarcity, diversity. Sinauer, Sunderland, pp 123–152

    Google Scholar 

  6. Dufrene M, Legendre P (1997) Indicator values calculated with method of species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366

    Google Scholar 

  7. Garwood NC, Janos DP, Brokaw N (1979) Earthquake-caused landslides: a major disturbance to tropical forests. Science 205:997–999

    PubMed  Article  CAS  Google Scholar 

  8. Gradstein SR, Kessler M, Lehnert M, Abiy M, Homeier J, Mandl N, Makeschin F, Richter M (2008) Vegetation, climate and soil of the unique Purdiaea forest of southern Ecuador. Ecotropica 14:15–26

    Google Scholar 

  9. Grubb PJ (1977) Control of forest growth and distribution on wet tropical mountains: with special reference to mineral nutrition. Annu Rev Ecol Syst 8:83–107

    Article  CAS  Google Scholar 

  10. Hetsch W, Hoheisel H (1976) Standorts- und Vegetationsgliederung in einem tropischen Nebelwald. Forst Jagdzg 147:200–209

    Google Scholar 

  11. Holmgren PK, Holmgren NH, Barnett LC (1990) Index herbariorum. Part 1: The herbaria of the world. New York Botanical Garden, Bronx

  12. Homeier J (2004) Baumdiversität, Waldstruktur und Wachstumsdynamik zweier tropischer Bergregenwälder in Ecuador und Costa Rica. Dissertationes Botanicae 391:1–207

    Google Scholar 

  13. Homeier J (2005) Purdiaea nutans Planch. In: Schütt P, Schuck HJ, Lang U, Roloff A (eds) Enzyklopädie der Holzgewächse 42 (1–4). Ecomed, Landsberg/Lech

  14. Jones MM, Tuomisto H, Clark DB, Olivas P (2006) Effects of mesoscale environmental heterogeneity and dispersal limitation on floristic variation in rain forest ferns. J Ecol 94:181–195

    Article  CAS  Google Scholar 

  15. Kessler M (1999) Plant species richness and endemism during natural landslide succession in a perhumid montane forest in the Bolivian Andes. Ecotropica 5:123–136

    Google Scholar 

  16. Kessler M (2001) Patterns of diversity and range size of selected plant groups along an elevational transect in the Bolivian Andes. Biodiv Conserv 10:1897–1920

    Article  Google Scholar 

  17. Kessler M (2002) Range size and its ecological correlates among the pteridophytes of Carrasco National Park, Bolivia. Glob Ecol Biogeogr 11:89–102

    Article  Google Scholar 

  18. Kluge J, Kessler M, Dunn R (2006) What drives elevational patterns of diversity? A test of geometric constraints, climate, and species pool effects for pteridophytes on an elevational gradient in Costa Rica. Glob Ecol Biogeogr 15:358–371

    Article  Google Scholar 

  19. Lehnert M, Kessler M, Salazar LI, Navarrete H, Werner FA, Gradstein SR (2007). Pteridophyta. In: Liede-Schumann S, Breckle, SW (eds) Provisional checklists of fauna and flora of the San Francisco valley and its surroundings (Reserva San Francisco/Province Zamora–Chinchipe, southern Ecuador). Ecotrop Monogr, vol 4. pp 59–68

  20. Leyer I, Wesche K (2007) Multivariate Statistik in der Ökologie. Springer, Berlin

    Google Scholar 

  21. Litherland M, Aspen JA, Jemielita RA (1994) The metamorphic belts of Ecuador. Overseas Mem Br Geol Surv 11:1–147

    Google Scholar 

  22. Magurran AE (2003) Measuring biological diversity. Blackwell, London

    Google Scholar 

  23. Mandl N, Lehnert M, Gradstein SR, Kessler M, Makeschin F, Richter M (2008) The unique Purdiaea nutans forest of Southern Ecuador: abiotic characteristics and cryptogamic diversity. Ecol Stud 198:275–280

    Article  Google Scholar 

  24. Myers N (2003) Biodiversity hotspots revisited. Bioscience 53:916–917

    Article  Google Scholar 

  25. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    PubMed  Article  CAS  Google Scholar 

  26. Paulsch A (2002) Development and application of a classification system for undisturbed and disturbed tropical montane forests based on vegetation structure. Dissertation, University of Bayreuth

  27. Proctor J, Bruijnzeel LA, Baker AJM (1999) What causes the vegetation types on Mount Bloomfield, a coastal tropical mountain of the western Philippines? Glob Ecol Biogeogr 8:347–354

    Article  Google Scholar 

  28. Schrumpf M, Guggenberger G, Valarezo C, Zech W (2001) Development and nutrient status along an altitudinal gradient in the Southern Ecuadorian Andes. Tropical montane rain forest soils. Die Erde 132:43–59

    Google Scholar 

  29. Simpson N (2004) Saving threatened plants and birds in the Andes of Ecuador. Plant Talk 37:17–21

    Google Scholar 

  30. Smith AR, Pryer KM, Schuettpelz E, Korall P, Schneider H, Wolf PG (2006) A classification for extant ferns. Taxon 55:705–731

    Google Scholar 

  31. Tanner EVJ (1977) Four montane rain forests of Jamaica: a quantitative characterization of the floristics, the soils and the folira mineral levels, and a discussion of the interrelations. J Ecol 65:883–918

    Article  CAS  Google Scholar 

  32. Tanner EVJ, Vitousek PM, Cuevas E (1998) Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology 79:10–22

    Article  Google Scholar 

  33. Tryon RM, Stolze RG (1989a) Pteridophyta of Peru. Part I. 1. Ophioglossaceae-12. Cyatheaceae. Fieldiana Bot NS 20:111–138

    Google Scholar 

  34. Tryon RM, Stolze RG (1989b) Pteridophyta of Peru. Part II: 13. Pteridaceae-15. Dennstaedtiaceae. Fieldiana Bot NS 22:1–128

    Google Scholar 

  35. Tryon RM, Stolze RG (1991) Pteridophyta of Peru. Part IV. 17. Dryopteridaceae. Fieldiana Bot NS 27:1–176

    Google Scholar 

  36. Tryon RM, Stolze RG (1992) Pteridophyta of Peru. Part III. 16. Thelypteridaceae. Fieldiana Bot NS 29:1–80

    Google Scholar 

  37. Tryon RM, Stolze RG (1993) Pteridophyta of Peru. Part V. 18. Aspleniaceae-21. Polypodiaceae. Fieldiana Bot NS 32:1–190

    Google Scholar 

  38. Tryon RM, Stolze RG (1994) Pteridophyta of Peru. Part VI. 2. Marsileaceae-28. Isoetaceae. Fieldiana Bot NS 34:1–123

    Google Scholar 

  39. Tuomisto H, Ruokolainen K, Kalliola R, Linna A, Danjoy W, Rodriguez Z (1995) Dissecting Amazonian biodiversity. Science 269:63–66

    PubMed  Article  CAS  Google Scholar 

  40. Valencia R, Foster RB, Villa G, Condit R, Sbenning J-C, Hernández C, Romoleroux K, Losos E, Magård E, Balslev H (2004) Tree species distributions and local habitat variation in the Amazon: large forest plot in eastern Ecuador. J Ecol 92:214–229

    Article  Google Scholar 

  41. Wilcke W, Yasin S, Valarezo C, Zech W (2001) Nutrient budget of three microcatchments under tropical montane forest in Ecuador. Die Erde 132:61–74

    Google Scholar 

Download references

Acknowledgements

We thank Nicole Mandl and S. Robbert Gradstein for field assistance and scientific input, the Deutsche Forschungsgemeinschaft (DFG, grant GR 1588/7) for financial support, and the Fundacíon Científica San Francisco for providing research facilities.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marcus Lehnert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1 (PDF 63 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kessler, M., Lehnert, M. Do ridge habitats contribute to pteridophyte diversity in tropical montane forests? A case study from southeastern Ecuador. J Plant Res 122, 421–428 (2009). https://doi.org/10.1007/s10265-009-0231-y

Download citation

Keywords

  • Andes
  • Cloud forests
  • Ferns
  • Habitat specialization
  • Slopes