Advertisement

Journal of Plant Research

, Volume 122, Issue 4, pp 421–428 | Cite as

Do ridge habitats contribute to pteridophyte diversity in tropical montane forests? A case study from southeastern Ecuador

  • Michael Kessler
  • Marcus LehnertEmail author
Regular Paper

Abstract

We address the question to which degree ridge habitats in tropical montane forests contribute to overall plant diversity by analysing patterns of pteridophyte (i.e. lycophytes and ferns) assemblages on ridges and slopes in three montane forest sites near Podocarpus National Park, Ecuador. The analyses, which involved 158 pteridophyte species (110 terrestrial, 96 epiphytic, 48 both) from 28 plots of 20 m × 20 m (or an equivalent of 400 m2), showed that more species were typical of one of the three study sites than of one of the two habitats (ridge/slope). As found in previous studies, alpha diversity on ridges was lower than on slopes, accounted for by the absence of numerous species that are found on slopes. Pteridophyte assemblages on ridges were more similar across study sites than those on slopes. Thus, unlike the structurally comparable (i.e. stunted, open) Amazonian forests, the studied montane ridge forests harbour fairly homogenous pteridophytes assemblages with very few specialised species. Our study implies that slope forests are of higher conservation priority for pteridophytes in the study region than ridge habitats. However, comparative studies are needed because other geographical regions and other groups of organisms may not share this pattern.

Keywords

Andes Cloud forests Ferns Habitat specialization Slopes 

Notes

Acknowledgements

We thank Nicole Mandl and S. Robbert Gradstein for field assistance and scientific input, the Deutsche Forschungsgemeinschaft (DFG, grant GR 1588/7) for financial support, and the Fundacíon Científica San Francisco for providing research facilities.

Supplementary material

10265_2009_231_MOESM1_ESM.pdf (64 kb)
Table S1 (PDF 63 kb)

References

  1. Beck E, Müller-Hohenstein K (2001) Analysis of undisturbed and disturbed tropical mountain forest ecosystems in Southern Ecuador. Die Erde 132:1–8Google Scholar
  2. Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) (2008) Gradients in a tropical mountain ecosystem of ecuador. Ecological Studies, vol 198. Springer, BerlinGoogle Scholar
  3. Bussmann RW (2001) The montane forests of Reserva Biológica San Francisco (Zamora–Chinchipe, Ecuador). Vegetation zonation and natural regeneration. Die Erde 132:9–25Google Scholar
  4. Bussmann RW (2002) Epiphyte diversity in a tropical Andean Forest—Reserva Biológica San Francisco, Zamora–Chinchipe, Ecuador. Ecotropica 7:43–59Google Scholar
  5. Cody ML (1986) Diversity, rarity, and conservation in meditarranean-climate regions. In: Soulé M (ed) Conservation biology: the science of scarcity, diversity. Sinauer, Sunderland, pp 123–152Google Scholar
  6. Dufrene M, Legendre P (1997) Indicator values calculated with method of species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366Google Scholar
  7. Garwood NC, Janos DP, Brokaw N (1979) Earthquake-caused landslides: a major disturbance to tropical forests. Science 205:997–999PubMedCrossRefGoogle Scholar
  8. Gradstein SR, Kessler M, Lehnert M, Abiy M, Homeier J, Mandl N, Makeschin F, Richter M (2008) Vegetation, climate and soil of the unique Purdiaea forest of southern Ecuador. Ecotropica 14:15–26Google Scholar
  9. Grubb PJ (1977) Control of forest growth and distribution on wet tropical mountains: with special reference to mineral nutrition. Annu Rev Ecol Syst 8:83–107CrossRefGoogle Scholar
  10. Hetsch W, Hoheisel H (1976) Standorts- und Vegetationsgliederung in einem tropischen Nebelwald. Forst Jagdzg 147:200–209Google Scholar
  11. Holmgren PK, Holmgren NH, Barnett LC (1990) Index herbariorum. Part 1: The herbaria of the world. New York Botanical Garden, BronxGoogle Scholar
  12. Homeier J (2004) Baumdiversität, Waldstruktur und Wachstumsdynamik zweier tropischer Bergregenwälder in Ecuador und Costa Rica. Dissertationes Botanicae 391:1–207Google Scholar
  13. Homeier J (2005) Purdiaea nutans Planch. In: Schütt P, Schuck HJ, Lang U, Roloff A (eds) Enzyklopädie der Holzgewächse 42 (1–4). Ecomed, Landsberg/LechGoogle Scholar
  14. Jones MM, Tuomisto H, Clark DB, Olivas P (2006) Effects of mesoscale environmental heterogeneity and dispersal limitation on floristic variation in rain forest ferns. J Ecol 94:181–195CrossRefGoogle Scholar
  15. Kessler M (1999) Plant species richness and endemism during natural landslide succession in a perhumid montane forest in the Bolivian Andes. Ecotropica 5:123–136Google Scholar
  16. Kessler M (2001) Patterns of diversity and range size of selected plant groups along an elevational transect in the Bolivian Andes. Biodiv Conserv 10:1897–1920CrossRefGoogle Scholar
  17. Kessler M (2002) Range size and its ecological correlates among the pteridophytes of Carrasco National Park, Bolivia. Glob Ecol Biogeogr 11:89–102CrossRefGoogle Scholar
  18. Kluge J, Kessler M, Dunn R (2006) What drives elevational patterns of diversity? A test of geometric constraints, climate, and species pool effects for pteridophytes on an elevational gradient in Costa Rica. Glob Ecol Biogeogr 15:358–371CrossRefGoogle Scholar
  19. Lehnert M, Kessler M, Salazar LI, Navarrete H, Werner FA, Gradstein SR (2007). Pteridophyta. In: Liede-Schumann S, Breckle, SW (eds) Provisional checklists of fauna and flora of the San Francisco valley and its surroundings (Reserva San Francisco/Province Zamora–Chinchipe, southern Ecuador). Ecotrop Monogr, vol 4. pp 59–68Google Scholar
  20. Leyer I, Wesche K (2007) Multivariate Statistik in der Ökologie. Springer, BerlinGoogle Scholar
  21. Litherland M, Aspen JA, Jemielita RA (1994) The metamorphic belts of Ecuador. Overseas Mem Br Geol Surv 11:1–147Google Scholar
  22. Magurran AE (2003) Measuring biological diversity. Blackwell, LondonGoogle Scholar
  23. Mandl N, Lehnert M, Gradstein SR, Kessler M, Makeschin F, Richter M (2008) The unique Purdiaea nutans forest of Southern Ecuador: abiotic characteristics and cryptogamic diversity. Ecol Stud 198:275–280CrossRefGoogle Scholar
  24. Myers N (2003) Biodiversity hotspots revisited. Bioscience 53:916–917CrossRefGoogle Scholar
  25. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858PubMedCrossRefGoogle Scholar
  26. Paulsch A (2002) Development and application of a classification system for undisturbed and disturbed tropical montane forests based on vegetation structure. Dissertation, University of BayreuthGoogle Scholar
  27. Proctor J, Bruijnzeel LA, Baker AJM (1999) What causes the vegetation types on Mount Bloomfield, a coastal tropical mountain of the western Philippines? Glob Ecol Biogeogr 8:347–354CrossRefGoogle Scholar
  28. Schrumpf M, Guggenberger G, Valarezo C, Zech W (2001) Development and nutrient status along an altitudinal gradient in the Southern Ecuadorian Andes. Tropical montane rain forest soils. Die Erde 132:43–59Google Scholar
  29. Simpson N (2004) Saving threatened plants and birds in the Andes of Ecuador. Plant Talk 37:17–21Google Scholar
  30. Smith AR, Pryer KM, Schuettpelz E, Korall P, Schneider H, Wolf PG (2006) A classification for extant ferns. Taxon 55:705–731Google Scholar
  31. Tanner EVJ (1977) Four montane rain forests of Jamaica: a quantitative characterization of the floristics, the soils and the folira mineral levels, and a discussion of the interrelations. J Ecol 65:883–918CrossRefGoogle Scholar
  32. Tanner EVJ, Vitousek PM, Cuevas E (1998) Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology 79:10–22CrossRefGoogle Scholar
  33. Tryon RM, Stolze RG (1989a) Pteridophyta of Peru. Part I. 1. Ophioglossaceae-12. Cyatheaceae. Fieldiana Bot NS 20:111–138Google Scholar
  34. Tryon RM, Stolze RG (1989b) Pteridophyta of Peru. Part II: 13. Pteridaceae-15. Dennstaedtiaceae. Fieldiana Bot NS 22:1–128Google Scholar
  35. Tryon RM, Stolze RG (1991) Pteridophyta of Peru. Part IV. 17. Dryopteridaceae. Fieldiana Bot NS 27:1–176Google Scholar
  36. Tryon RM, Stolze RG (1992) Pteridophyta of Peru. Part III. 16. Thelypteridaceae. Fieldiana Bot NS 29:1–80Google Scholar
  37. Tryon RM, Stolze RG (1993) Pteridophyta of Peru. Part V. 18. Aspleniaceae-21. Polypodiaceae. Fieldiana Bot NS 32:1–190Google Scholar
  38. Tryon RM, Stolze RG (1994) Pteridophyta of Peru. Part VI. 2. Marsileaceae-28. Isoetaceae. Fieldiana Bot NS 34:1–123Google Scholar
  39. Tuomisto H, Ruokolainen K, Kalliola R, Linna A, Danjoy W, Rodriguez Z (1995) Dissecting Amazonian biodiversity. Science 269:63–66PubMedCrossRefGoogle Scholar
  40. Valencia R, Foster RB, Villa G, Condit R, Sbenning J-C, Hernández C, Romoleroux K, Losos E, Magård E, Balslev H (2004) Tree species distributions and local habitat variation in the Amazon: large forest plot in eastern Ecuador. J Ecol 92:214–229CrossRefGoogle Scholar
  41. Wilcke W, Yasin S, Valarezo C, Zech W (2001) Nutrient budget of three microcatchments under tropical montane forest in Ecuador. Die Erde 132:61–74Google Scholar

Copyright information

© The Botanical Society of Japan and Springer 2009

Authors and Affiliations

  1. 1.Abteilung Systematische BotanikAlbrecht-von-Haller-Institut für PflanzenwissenschaftenGöttingenGermany
  2. 2.Systematic BotanyUniversity of ZürichZürichSwitzerland
  3. 3.Abteilung für BotanikStaatliches Museum für Naturkunde StuttgartStuttgartGermany

Personalised recommendations