Skip to main content

Advertisement

Log in

Satellite Ecology (SATECO)—linking ecology, remote sensing and micrometeorology, from plot to regional scale, for the study of ecosystem structure and function

  • Current Topics in Plant Research
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

There is a growing requirement for ecosystem science to help inform a deeper understanding of the effects of global climate change and land use change on terrestrial ecosystem structure and function, from small area (plot) to landscape, regional and global scales. To meet these requirements, ecologists have investigated plant growth and carbon cycling processes at plot scale, using biometric methods to measure plant carbon accumulation, and gas exchange (chamber) methods to measure soil respiration. Also at the plot scale, micrometeorologists have attempted to measure canopy- or ecosystem-scale CO2 flux by the eddy covariance technique, which reveals diurnal, seasonal and annual cycles. Mathematical models play an important role in integrating ecological and micrometeorological processes into ecosystem scales, which are further useful in interpreting time-accumulated information derived from biometric methods by comparing with CO2 flux measurements. For a spatial scaling of such plot-level understanding, remote sensing via satellite is used to measure land use/vegetation type distribution and temporal changes in ecosystem structures such as leaf area index. However, to better utilise such data, there is still a need for investigations that consider the structure and function of ecosystems and their processes, especially in mountainous areas characterized by complex terrain and a mosaic distribution of vegetation. For this purpose, we have established a new interdisciplinary approach named ‘Satellite Ecology’, which aims to link ecology, remote sensing and micrometeorology to facilitate the study of ecosystem function, at the plot, landscape, and regional scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

EVI:

Enhanced vegetation index

GPP:

Gross primary production

LAI:

Leaf area index

LSM:

Land surface model

MODIS:

Moderate resolution imaging spectroradiometer

NDVI:

Normalized difference vegetation index

NEE:

Net ecosystem exchange

NEP:

Net ecosystem production

NPP:

Net primary production

PAI:

Plant area index

PAR:

Photosynthetic active radiation

RE:

Ecosystem respiration

RA:

Autotrophic respiration

RH:

Heterotrophic respiration

RR:

Root respiration

V cmax :

Maximum velocity of carboxylation

References

  • Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Glob Chang Biol 9:479–492

    Google Scholar 

  • Baldochi DD (2008) ‘Breathing’ of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Aust J Bot 56:1–26

    Google Scholar 

  • Baldocchi DD, Meyers T (1998) On using eco-physiological, micrometeorological and biogeochemical theory to evaluate carbon dioxide, water vapor and trace gas fluxes over vegetation: a perspective. Agric For Meteorol 90:1–25

    Google Scholar 

  • Baldocchi DD, Falge E, Gu L, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer Ch, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee X, Malhi Y, Meyers T, Munger W, Oechel W, Paw UKT, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001) FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densties. Bull Am Meteorol Soc 82:2415–2434

    Google Scholar 

  • Ball JT, Woodrow IE, Berry JA (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. Photosynth Res 4:221–224

    Google Scholar 

  • Bonan GB (1996) A land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: technical description and user’s guide. National Center for Atmospheric Research, Boulder CO

    Google Scholar 

  • Brooks A, Farquhar GD (1985) Effect of temperature on the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light. Planta 165:397–406

    CAS  Google Scholar 

  • Buchmann N (2000) Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biol Biochem 32:1625–1635

    CAS  Google Scholar 

  • Buchmann N (2002) Plant ecophysiology and forest response to global change. Tree Physiol 22:1177–1184

    PubMed  CAS  Google Scholar 

  • Caldwell MM, Meister HP, Tenhune JD, Lange OL (1986) Canopy structure, light microclimate and leaf gas exchange of Quercus coccifera L. in a Portuguese macchia: measurements in different canopy layer and simulations with a canopy model. Trees 1:25–41

    Google Scholar 

  • Canadell JG, Mooney HA, Baldocchi DD, Berry JA, Ehleringer JR, Field CB, Gower ST, Hollinger DY, Hunt JE, Jackson RB, Running SW, Shaver GR, Steffen W, Trumbore SE, Valentini R, Bond BY (2000) Carbon metabolism of the terrestrial biosphere: a multitechnique approach for improved understanding. Ecosystems 3:115–130

    CAS  Google Scholar 

  • Cannell MGR, Thornley JHM (2000) Modelling the components of plant respitation: some guiding principles. Ann Bot 85:45–54

    CAS  Google Scholar 

  • Cernusca A, Bahn M, Chemini C, Graber W, Siegwolf R, Tappeiner U, Tenhune J (1998) ECOMONT: a combined approach of field measurements and process-based modelling for assessing effects of landuse changes in mountain landscapes. Ecol Model 113:167–178

    CAS  Google Scholar 

  • Cernusca A, Tappeiner U, Bayfield N (1999) Land-use changes in European mountain ecosystems. Blackwell, Berlin

    Google Scholar 

  • Chapin FSIII, Matson PA, Mooney HA (2002) Principles of terrestrial ecosystem ecology. Springer, New York

    Google Scholar 

  • Chapin FSIII, Woodwell GM, Randerson JT, Rastetter EB, Lovett GM, Baldocchi DD, Clark DA, Harmon ME, Schimel DS, Valentini R, Wirth C, Aber JD, Cole JJ, Goulden ML, Harden JW, Heimann M, Howarth RW, Matson PA, McGuire AD, Melillo JM, Mooney HA, Neff JC, Houghton RA, Pace ML, Ryan MG, Running SW, Sala OE, Schesinger WH, Schulze E-D (2006) Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems 9:1041–1050

    CAS  Google Scholar 

  • Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187

    PubMed  CAS  Google Scholar 

  • Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA, Brovkin V, Cox PM, Fisher V, Foloey JA, Ramankutty N, Sitch S, Smith B, White A, Young-Molling C (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob Chang Biol 7:357–373

    Google Scholar 

  • Curtis PS, Hanson PJ, Bolstad P, Barford C, Randolph JC, Schmid HP, Wilson KB (2002) Biometric and eddy-covariance based estimates of annual carbon storage in five eastern North American deciduous forests. Agric For Meteorol 113:3–19

    Google Scholar 

  • Curtis PS, Vogel CS, Gough CM, Schmid HP, Su HB, Bovard BD (2005) Respiratory carbon losses and the carbon-use efficiency of a northern hardwood forest, 1999–2003. New Phytol 167:437–456

    PubMed  CAS  Google Scholar 

  • Damesin C, Ceschia E, Le Goff N, Ottorini JM, Dufrêne E (2002) Stem and branch respiration of beech: from tree measurements to estimations at the stand level. New Phytol 153:159–172

    Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedback to climate change. Nature 440:165–173

    PubMed  CAS  Google Scholar 

  • Davidson EA, Janssens IA, Luo Y (2006) On the variability of respiration in terrestrial ecosytems: moving beyond Q10. Glob Chang Biol 12:154–164

    Google Scholar 

  • Dudhia J (1993) A nonhydrostatic version of the Penn State-NCAR mesoscale model: validation test and simulation of an Atlantic cyclone and cold front. Mon Weather Rev 121:1493–1513

    Google Scholar 

  • Ehleringer JR, Field CB (eds) (1993) Scaling physiological processes––leaf to globe. Academic, San Diego

    Google Scholar 

  • Ekblad A, Hogberg P (2001) Natural abundance of 13C in CO2 respired from forest soils reveals speed of link between tree photosynthesis and root reparation. Oecologia 127:305–308

    Google Scholar 

  • Fang J, Oikawa T, Kato T, Mo W, Wang Z (2005) Biomass carbon accumulation by Japan’s forests from 1947 to 1995. Global Biogeochem Cycles 19(2):GB2004.1–GB2004.100, doi:10.1029/2004GB002253

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    CAS  Google Scholar 

  • Field CB, Randerson JT, Malmstrom CM (1995) Global net primary production: combining ecology and remote sensing. Remote Sens Environ 51:74–88

    Google Scholar 

  • Gamon JA, Qiu H (1999) Ecological applications of remote sensing at multiple scales. In: Pugnaire FI, Valaldares F (eds) Handbook of functional plant ecology. Dekker, New York, pp 805–846

    Google Scholar 

  • Gould W (2000) Remote sensing of vegetation, plant species richness, and regional biodiversity hotspots. Ecol Appl 10:1861–1870

    Google Scholar 

  • Heinsch FA, Zhao M, Runnign SWW, Kimball JS, Nemani RR, Davis KJ, Bolstad PV, Cook BD, Desai AR, Ricciuto DM, Law BE, Oechel WC, Kwon H, Luo H, Wpofsy SC, Dunn AL, Munger JW, Baldocchi DD, Xu L, Hollinger DY, Richardson AD, Stoy PC, Siqueria MBS, Monson RK, Burns SP, Flanagan LB (2006) Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations. IEEE Geosci Remote Sens 44:1908–1925

    Google Scholar 

  • Hikosaka K (2004) Interspecific difference in the photosynthesis-nitrogen relationship: patterns, physiological causes, and ecological importance. J Plant Res 117:481–494

    PubMed  Google Scholar 

  • Intergovermental Panel on Climate Change (2007) Climate change 2007––the physical science basis: contribution of working group I to the fourth assessment report of the IPCC. Cambridge University Press, London

    Google Scholar 

  • International Geosphere-Biosphere Programme (2001) Global change and mountain regions. IGBP Report 49, IGBP

  • Ito A, Oikawa T (2000) A model analysis of the relationship between climate perturbations and carbon budget anomalies in global terrestrial ecosystems: 1970–1997. Climate Res 15:161–183

    Google Scholar 

  • Ito A, Oikawa T (2002) A simulation model of the carbon cycle in land ecosystems (Sim-CYCLE): a description based on dry-matter production theory and plot scale validation. Ecol Model 151:143–176

    CAS  Google Scholar 

  • Ito A, Saigusa N, Murayama S, Yamamoto S (2005) Modeling of gross and net carbon dioxide exchange over a cool-temperate deciduous broad-leaved forest in Japan: analysis of seasonal and interannual change. Agric For Meteorol 134:122–134

    Google Scholar 

  • Ito A, Muraoka H, Koizumi H, Saigusa N, Muryama S, Yamamoto S (2006) Seasonal variation in leaf properties and ecosystem carbon budget in a cool-temperate deciduous broad-leaved forest: simulation analysis at Takayama site, Japan. Ecol Res 21:137–149

    CAS  Google Scholar 

  • Ito A, Inatomi M, Mo W, Lee M, Koizumi H, Saigusa N, Murayama S, Yamamoto S (2007) Examination of model-estimated ecosystem respiration using flux measurements from a cool-temperate deciduous broad-leaved forest in central Japan. Tellus 59B:616–624

    Google Scholar 

  • Jonckheere I, Fleck S, Nackaerts K, Muys B, Coppin P, Weiss M, Baret F (2004) Review of methods for in situ leaf area index determination Part I. Theories, sensors and hemispoherical photography. Agric For Meteorol 121:19–35

    Google Scholar 

  • Kang S, Doh S, Lee D, Lee D, Jin VL, Kimball JS (2003) Topographic and climatic controls on soil respiration in six temperate mix-hardwood forest slopes, Korea. Glob Chang Biol 9:1427–1437

    Google Scholar 

  • Kim J, Guo Q, Baldocchi DD, Leclerc MY, Xu L, Schmid HP (2006a) Upscaling fluxes from tower to landscape: Overlaying flux footprints on high-resolution (IKONOS) images of vegetation cover. Agric For Meteorol 136:132–146

    Google Scholar 

  • Kim J, Le D, Hong J, Kang S, Kim SJ, Moon SK, Kim JH, Son Y, Lee J, Kim S, Woo N, Kim K, Lee B, Lee BL, Kim S (2006b) HydroKorea and CarboKorea: cross-scale studies of ecohydrology and biogeochemistry in a heterogeneous and complex forest catchment of Korea. Ecol Res 21:881–889

    Google Scholar 

  • Kimura K, Ishida A, Uemura A, Matsumoto Y, Terashima I (1998) Effects of current-year and previous-year PPFDs on shoot gross morphology and leaf propoerties in Fagus japonica. Tree Physiol 18:459–466

    PubMed  Google Scholar 

  • Kondo M, Muraoka H, Uchida M, Yazaki Y, Koizumi H (2005) Refixation of respired CO2 by understory vegetation in a cool-temperate deciduous forest in Japan. Agric For Meteorol 134:110–121

    Google Scholar 

  • Kramer K, Leinonen I, Bartelink HH, Berbigier P, Borchetti M, Bernhofer C, Cienciala E, Dolman AJ, Froer O, Gracia CA, Granier A, Grünwald T, Hari P, Jans W, Kellomäki S, Loustau D, Magnani F, Markkanen T, Matteucci G, Mohren GMJ, Moors E, Missinen A, Peltola H, Sabate S, Sanchez A, Sontag M, Valentini R, Vesala T (2002) Evaluation of six process-based forest growth models using Eddy-covariance measurements of CO2 and H2O fluxes at six forest sites in Europe. Glob Chang Biol 8:213–230

    Google Scholar 

  • Leuzinger S, Korner C (2007) Tree species diversity affects canopy leaf temperatures in a mature temperate forest. Agric For Meteorol 146:29–37

    Google Scholar 

  • Lee M, Nakane K, Nakatsubo T, Koizumi H (2003) Seasonal changes in the contribution of root respiration to total soil respiration in a cool-temperate deciduous forest. Plant Soil 255:311–318

    CAS  Google Scholar 

  • Liang S (2004) Quantitative remote sensing of land surfaces. Wiley, New Jersey

    Google Scholar 

  • Luo Y, Zhou X (2006) Soil respiration and the environment. Elsevier, Burlington

    Google Scholar 

  • Maki M, Goto S, Ishihara M, Nishida K, Kojima T, Akiyama T (2008) Mapping the potential distribution of dwarf bamboo using satellite imagery and DEM (in Japanese with English summary). J Remote Sens Soc Jpn 28:28–35

    Google Scholar 

  • Mikami H, Nishida K, Muraoka H (2006) Automatic detection of forest canopy gaps and estimation of leaf area index (LAI) using the digital fish-eye camera’s images (in Japanese with English summary). J Jpn Soc Photogramm Remote Sens 45:13–22

    Google Scholar 

  • Mo W, Lee M, Uchida M, Inatomi M, Saigusa N, Mariko S, Koizumi H (2005) Seasonal and annual variations in soil respiration in a cool-temperate deciduous broad-leaved forest in Japan. Agric For Meteorol 134:81–94

    Google Scholar 

  • Monsi M (1960) Dry-matter production in plants. Bot Mag Tokyo 73:81–90

    Google Scholar 

  • Mooney HA, Chapin FSIII (1994) Future directions of global change research in terrestrial ecosystems. Trends Ecol Evol 9:371–372

    Google Scholar 

  • Motohka T, Koyanagi T, Nasahara KN (2008) Monitoring vegetation phenology in Japan using satellite remote sensing. Proceedings of 2nd International Symposium of 21st Century COE Program, Gifu University, ‘Integrating and scaling processes for plot to landscape ecosystem study’, p 94

  • Muraoka H, Koizumi H (2005) Photosynthetic and structural characteristics of canopy and shrub trees in a cool-temperate deciduous broadleaved forest: Implication to the ecosystem carbon gain. Agric For Meteorol 134:39–59

    Google Scholar 

  • Muraoka H, Koizumi H (2006) Leaf and shoot ecophysiological properties and their role in photosynthetic carbon gain of cool-temperate deciduous forest trees. In: Kawatata H, Awaya Y (eds) Global climate change and response of carbon cycle in the Equatorial Pacific and Indian Oceans and adjacent landmasses. Elsevier Oceanography Series, vol 73. Elsevier, Amsterdam, pp 417–443

    Google Scholar 

  • Muraoka H, Noda H, Uchida M, Ohtsuka T, Koizumi H, Nakatsubo T (2008) Photosynthetic characteristics and biomass distribution of the dominant vascular plant species in a high Arctic tundra ecosystem, Ny-Ålesund, Svalbard: implications for their role in ecosystem carbon gain. J Plant Res 121:137–145

    PubMed  CAS  Google Scholar 

  • Nakaji T, Ide R, Takagi K, Kosugi Y, Ohkubo S, Nasahara KN, Saigusa N, Oguma H (2008) Utility of spectral vegetation indices for estimation of light conversion efficiency in coniferous forests in Japan. Agric For Meteorol 148:776–787

    Google Scholar 

  • Nasahara KN, Muraoka H, Nagai S, Mikami H (2008) Vertical integration of leaf area index in a Japanese deciduous broad-leaved forest. Agric For Meteorol 148:1136–1146

    Google Scholar 

  • Niinemets Ü, Kull O, Tenhunen JD (2004) Within-canopy variation in the rate of development of photosynthetic capacity is proportional to integrated quantum flux density in temperate deciduous trees. Plant Cell Environ 27:293–313

    CAS  Google Scholar 

  • Nishida K (2007) Phenological eyes network (PEN)––A validation network for remote sensing of the terrestrial ecosystems. AsiaFlux Newsl 21:9–13

    Google Scholar 

  • Nishida K, Muraoka H (2006) Scaling up ground vegetation data by inversion of a radiative transfer model with MODIS data. Global Vegetation Workshop 2006, August 7–10, 2006, University of Montana

  • Noda H, Muraoka H, Tang Y, Washitani I (2007) Phenological changes in rate of respiration and annual carbon balance in a perennial herbaceous plant, Primula sieboldii. J Plant Res 120:375–383

    PubMed  Google Scholar 

  • Odum EP (1969) The strategy of ecosystem development. Science 164:262–270

    PubMed  CAS  Google Scholar 

  • Ohtsuka T, Akiyama T, Hashimoto Y, Inatomi M, Sakai T, Jia S, Mo W, Tsuda S, Koizumi H (2005) Biometric based estimates of net primary production (NPP) in a cool-temperate deciduous forest satnd beneath a flux tower. Agric For Meteorol 134:27–28

    Google Scholar 

  • Ohtsuka T, Mo W, Satomura T, Inatomi M, Koizumi H (2007) Biometric based carbon flux measurements and net ecosystem production (NEP) in a temperate deciduous broad-leaves forest beneath a flux tower. Ecosystems 10:324–334

    CAS  Google Scholar 

  • Oikawa T (1985) Simulation of forest carbon dynamics based on a dry-matter production model I. Fundamental model structure of a tropical rainforest ecosystem. Bot Mag Tokyo 98:225–238

    Google Scholar 

  • Owen K, Tenhunen J, Reichstein M, Wang Q, Falge E, Geyer R, Xiao X, Stoy P, Ammann C, Arain A, Aubinet M, Aurela M, Bernhofer C, Hadley J, Heinesch B, Hollinger D, Knohll A, Kutsch W, Lohila A, Meyers T, Moors E, Moureaux C, Pilegaard K, Saigusa N, Verma S, Vesala T, Vogel C (2007) Linking flux network measurements to continental scale simulations: ecosystem carbon dioxide exchange capacity under non-water-stressed conditions. Glob Chang Biol 13:1–27

    Google Scholar 

  • Pearcy RW, Muraoka H, Valladares F (2005) Crown architecture in sun and shade environments: assessing function and trade-offs with a three-dimensional simulation model. New Phytol 166:791–800

    PubMed  Google Scholar 

  • Peñuelas J, Filella I (1998) Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends Plant Sci 3:151–156

    Google Scholar 

  • Plummer SE (2000) Perspectives on combining ecological process models and remotely sensed data. Ecol Model 129:169–186

    Google Scholar 

  • Running SW, Baldocchi DD, Turner DP, Gower ST, Bakwin PS, Hubbard KA (1999) A global terrestrial monitoring ntework integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data. Remote Sens Environ 70:108–127

    Google Scholar 

  • Running SW, Nemani RR, Heinsch FA, Zhao M, Reeves M, Hashimoto H (2004) A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54:547–560

    Google Scholar 

  • Saigusa N, Yamamoto S, Murayama S, Kondo H, Nishimura N (2002) Gross primary production and net ecosystem exchange of a cool-temperate deciduous forest estimated by the eddy covariance method. Agric For Meteorol 112:203–215

    Google Scholar 

  • Saigusa N, Yamamoto S, Murayama S, Kondo H (2005) Inter-annual variability of carbon budget components in an AsiaFlux forest site estimated by long-term flux measurements. Agric For Meteorol 134:4–16

    Google Scholar 

  • Saigusa N, Yamamoto S, Hirata R, Ohtani Y, Ide R, Asanuma J, Gamo M, Hirano T, Kondo H, Kosugi Y, Li S, Nakai Y, Takagi K, Tani M, Wang H (2008) Temporal and spatial variations in the seasonal patterns of CO2 flux in boreal, temperate, and tropical forests in East Asia. Agric For Meteorol 148:700–713

    Google Scholar 

  • Sakai T, Akiyama T (2005) Quantifying the spatio-temporal variability of net primary production of the understory species, Sasa senanensis, using multipoint measuring techniques. Agric For Meterol 134:60–69

    Google Scholar 

  • Sasai T, Ichii K, Yamaguchi Y, Nemani R (2005) Simulating terrestrial carbon fluxes using the new biosphere model ‘biosphere model integrating eco-physiological and mechanistic approaches using satellite data’ (BEAMS). J Geophys Res 110:G02014. doi:10.1029/2005JG00045

    Google Scholar 

  • Sasai T, Okamoto K, Hiyama T, Yamaguchi Y (2007) Comparing terrestrial carbon fluxes from the scale of a flux tower to the global scale. Ecol Model 208:135–144

    Google Scholar 

  • Sato H, Itoh A, Kohyama T (2007) SEIB-DGVM: a new dynamic global vegetation model using a spatially explicit individual-based approach. Ecol Model 200:279–307

    Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry: an analysis of global change. Academic, New York

    Google Scholar 

  • Schmid HP (2002) Footprint modeling for vegetation atmosphere exchange studies: a review and perspective. Agric For Metorol 113:159–183

    Google Scholar 

  • Sellers PJ, Hall FG, Kelly RD, Balck A, Baldocchi D, Berry J, Ryan M, Ranson KJ, Crill PM, Lettenmaier DP, Margolis H, Cihlar J, Newcomer J, Fitzjarrald D, Jarvis P, Gower ST, Halliwell D, Williams D, Goodison B, Wickland DE, Guertin FE (1997) BOREAS in 1997: experiment overview, scientific results, and future directions. J Geophys Res 102:28731–28769

    Google Scholar 

  • Shibata H, Hiura T, Tanaka Y, Takagi K, Koike T (2005) Carbon cycling and budget in a forested basin of southwestern Hokkaido, northern Japan. Ecol Res 20:325–331

    Google Scholar 

  • Sims DA, Rahman AF, Cordova VD, El-Masri BZ, Baldocchi DD, Bolstad PV, Flanagan LB, Goldstein AH, Hollinger DY, Misson L, Monson RK, Oechel WC, Schmid HP, Wofsy SC, Xu L (2008) A new model of gross primary productivity for North American ecosystems based solely on the enhanced vegetation index and land surface temperature from MODIS. Remote Sens Environ 112:1633–1646

    Google Scholar 

  • Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Thonicke K, Venevsky S (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LJP dynamic global vegetation model. Glob Chang Biol 9:161–185

    Google Scholar 

  • Sternberg L da SL (1989) A model to estimate carbon dioxide recycling in forests using 13C/12C ratios and concentrations of ambient carbon dioxide. Agric For Meteorol 48:163–173

    Google Scholar 

  • Swanson FJ, Kratz TK, Caine N, Woodmansee RG (1988) Landform effects on ecosystem patterns and processes. Bioscience 38:92–98

    Google Scholar 

  • Tang J, Baldocchi DD, Xu L (2005) Tree photosynthesis modulates soil respiration on a diurnal time scale. Glob Chang Biol 11:1–7

    Google Scholar 

  • Tansley AG (1935) The use and abuse of vegetational concepts and terms. Ecology 16:284–307

    Google Scholar 

  • Tenhunen JD, Kabat P (1999) Integrating hydrology, ecosystem dynamics, and biogeochemistry in complex landscapes. Wiley, Chichester

    Google Scholar 

  • Tenhunen JD, Lenz R, Hantschel R (2001) Ecosystem approaches to landscape management in central Europe. Springer, Berlin

    Google Scholar 

  • Tucker CJ, Slayback DA, Pinzon JE, Los SO, Myneni RB, Taylor MG (2001) Higher northern latitude normalized difference vegetation growing index and growing season trends from 1982–1999. Int J Biometeorol 45:184–190

    PubMed  CAS  Google Scholar 

  • Turner DP, Ritts WD, Cohen WB, Gower ST, Zhao M, Running SW, Wofsy SC, Urbanski S, Dunn AL, Munger JW (2003) Scaling gross primary production (GPP) over boreal and deciduous forest lanscapes in support of MODIS GPP product validation. Remote Sens Environ 88:256–270

    Google Scholar 

  • Turner DP, Ollinger SV, Kimball JS (2004) Integrating remote sensing and ecosystem process models for landscape- to regional-scale analysis of the carbon cycle. Bioscience 54:573–584

    Google Scholar 

  • Turner DP, Ritts WD, Cohen WB, Maeirsperger TK, Gower ST, Kirschbaum AA, Running SW, Zhao M, Wofsy SC, Dunn AL, Law BE, Campbell JL, Oechel WC, Kwon HJ, Meyers TP, Small EE, Kurc SA, Gamon JA (2005) Site-level evaluation of staellite-based global terrestrial fross primary production and net primary production monitoring. Glob Chang Biol 11:1–19

    Google Scholar 

  • Ustin SL, Roberts DA, Gamon JA, Asner GP, Green RO (2004) Using imaging spectroscopy to study ecosystem processes and properties. Bioscience 54:523–534

    Google Scholar 

  • Valentini R, Matteucci G, Dolman AJ, Schulze E-D, Rebmann C, Moors EJ, Granier A, Gross P, Jensen NO, Pilegaard K, Lindroth A, Grelle A, Bernhofer C, Grünwald T, Aubinet M, Ceulemans R, Kowalski AS, Vesala T, Rannik Ü, Berbigier P, Loustau D, Guðmundsson J, Thorgeirsson H, Ibrom A, Morgenstern K, Clement R, Moncrief J, Montagnani L, Minerbi S, Jarvis P (2000) Respiration as the main determinant of carbon balance in European forests. Nature 404:861–865

    PubMed  CAS  Google Scholar 

  • Verhoef W (1984) Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model. Remote Sens Environ 16:125–141

    Google Scholar 

  • Wahid DA, Akiyama T (2007) Possibilities of landuse/landcover classification using ALOS AVNIR-2 in Takayama. Jpn Soc Photogramm Remote Sens 46:56–67

    Google Scholar 

  • Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Gulberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    PubMed  CAS  Google Scholar 

  • Waring RH, Running SW (2007) Forest ecosystems: analysis at multiple scales, 3rd edn. Elsevier, Burlington

    Google Scholar 

  • Watanabe T, Yokozawa M, Emori S, Takaya K, Sumida A, Hara T (2004) Developing a multilayered integrated numerical model of surface physics––growing plants interaction (MINoSGI). Glob Chang Biol 10:963–982

    Google Scholar 

  • Wilson KB, Baldocchi DD, Hanson PJ (2001) Leaf age affects the seasonal pattern of photosynthetic capacity and net ecosystem exchange of carbon in a deciduous forest. Plant. Plant Cell Environ 24:571–583

    Google Scholar 

  • Xiao X, Zhang Q, Braswell B, Urbanski S, Boles S, Wofsy S, Moore BIII, Ojima D (2004) Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sens Environ 91:256–270

    Google Scholar 

  • Yamamoto S, Murayama S, Saigusa N, Kondo H (1999) Seasonal and inter-annual variation of CO2 flux between a temperate forest and the atmosphere in Japan. Tellus 51B:402–413

    CAS  Google Scholar 

  • Yamamoto S, Koizumi H (2005) Long-term carbon exchange at Takayama site, a cool-temperate deciduous forest in Japan. Agric For Meterol 134:1–3

    Google Scholar 

Download references

Acknowledgments

We thank the members of ‘SATECO’ and colleagues at the Takayama site, especially T. Akiyama, K.N. Nasahara, S. Nagai, T.M. Saitoh, M. Ishihara, J. Yoshino, H. Noda, I. Tamagawa, T. Ohtsuka, T. Motohka, N. Saigusa and S. Murayama, for their help in preparing this paper. Thanks are also due to S. Yamamoto (Okayama University), J.D. Tenhunen (University Bayreuth), S. Mariko (Hosei University), Y. Son (Korea University), J. Fang (Peking University), J. Kim (Yonsei University), A. Ito (NIES), R.W. Pearcy (UC Davis), H. Shibata and T. Hirano (Hokkaido University) for their encouragement, discussions and collaborations. All field work at the Takayama site is supported by K. Kurumado and Y. Miyamoto (Gifu University). Research described in this paper and our activity in Takayama site have been financially supported by the JSPS/MEXT 21st Century COE Program, the Global Environment Research Fund of the Ministry of Environment Japan (S-1: Integrated Study for Terrestrial Carbon Management of Asia in the 21st Century Based on Scientific Advancement), the JSPS A3 Foresight Program (Gifu University, Korea University and Peking University), the JSPS Joint Research Program (Japan–Germany) and a Grant-in-Aid (KAKENHI, JSPS) to H.M. and H.K. Finally we thank the Journal of Plant Research for inviting us to write this paper, and also the anonymous reviewers for their positive comments on our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Muraoka.

Additional information

This article was contributed at the invitation of the Editorial Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muraoka, H., Koizumi, H. Satellite Ecology (SATECO)—linking ecology, remote sensing and micrometeorology, from plot to regional scale, for the study of ecosystem structure and function. J Plant Res 122, 3–20 (2009). https://doi.org/10.1007/s10265-008-0188-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-008-0188-2

Keywords

Navigation