Skip to main content
Log in

Plant microtubule studies: past and present

  • JPR Symposium
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Here, I briefly review historical and morphological aspects of plant microtubule studies in land plants. Microtubules are formed from tubulins, and the polymeric configurations appear as singlet, doublet, and triplet microtubules. Doublet microtubules occur in the axoneme of cilia and flagella, and triplet microtubules occur in the basal bodies and centrosomes. Doublet and triplet microtubules are lost in all angiosperms and some gymnosperms that do not possess flagellated sperm. In land plants with flagellated sperm, centriolar centrosomes transform into basal bodies during spermatogenesis. In flowering plants, however, most male gametes (sperm) are conveyed to eggs without the benefit of cilia or flagella; thus, higher plants lack centriolar centrosome and doublet and triplet microtubules. The loss of centriolar centrosomes from the life cycle of flowering plants may have influenced the evolution of the plant microtubule system. Comparison of mitotic apparatuses in basal land plants and flowering plants illuminates the evolutionary transition from the centriolar microtubule system to the acentriolar microtubule system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bajer AS (1953) Endosperm—a valuable material for experimental studies of mitosis in vivo. Acta Soc Bot Poloniae 22:475–482

    Google Scholar 

  • Bajer AS (1973) Interaction of microtubules and the mechanism of chromosome movement (zipper hypothesis). 1. General principle. Cytobios 8:139–160

    PubMed  CAS  Google Scholar 

  • Bajer AS, Molè-Bajer J (1972) Spindle dynamics and chromosome movements. Int Rev Cytol, Suppl 3, Academic, New York

    Google Scholar 

  • Bajer AS, Molè-Bajer J (1975) Lateral movements in the spindle and the mechanism of mitosis. In: Inoué S, Stephens RE (eds) Molecules and cell movement. Raven, New York

    Google Scholar 

  • Bajer AS, Molè-Bajer J (1986) Reorganization of microtubules in endosperm cells and cell fragments of the higher plant Haemanthus in vivo. J Cell Biol 102:263–281

    Article  PubMed  CAS  Google Scholar 

  • Borisy GG, Taylor EW (1967) The mechanism of action of colchicine: colchicine binding to sea urchin eggs and the mitotic apparatus. J Cell Biol 34:535–548

    Article  PubMed  CAS  Google Scholar 

  • Brown RC, Lemmon BE (1988) Cytokinesis occurs at boundaries of domains delimited by nuclear-based microtubules in sporocytes of Conocephalum conicum (Bryophyta). Cell Motil Cytoskel 11:139–146

    Article  Google Scholar 

  • Brown RC, Lemmon BE (1990) Polar organizers mark division axis prior to preprophase band formation in mitosis of the hepatic Reboulia hemisphaerica (Bryophyta). Protoplasma 156:74–81

    Article  Google Scholar 

  • Brown RC, Lemmon BE (1997) The quadripolar microtubule system in lower land plants. J Plant Res 110:93–106

    Article  Google Scholar 

  • Brown RC, Lemmon BE, Nguyen H (2002) The microtubule cycle during successive mitotic waves in the syncytial female gametophyte of ginkgo. J Plant Res 115:491–494

    Article  PubMed  Google Scholar 

  • Cleary AL, Hardham AR (1988) Depolymerization of microtubule arrays in root-tip cells by oryzalin and their recovery with modified nucleation patterns. Can J Bot 66:2353–2366

    Article  CAS  Google Scholar 

  • Dustin P (1978) Microtubules. Springer, Berlin

    Google Scholar 

  • Foster AS, Gifford JEM (1974) Comparative morphology of vascular plants. W.H. Freeman, San Francisco

    Google Scholar 

  • Friedman WE, Gifford EM (1997) Development of the male gametophyte of Ginkgo biloba: a window into the reproductive biology of early seed plants. In: Hori T, Ridge RW, Tulecke W, Del Tredici P, Tremouiillaux-Guiller J, Tobe H (eds) Ginkgo biloba—a global treasure: from biology to medicine. Springer, Tokyo, pp 29–49

    Google Scholar 

  • Gall JG (1996) A practical history. Views of the Cell. American Society for Cell Biology, Bethesda

    Google Scholar 

  • Green PB (1962) Mechanism for plant cellular morphogenesis. Science 138:1404–1405

    Article  PubMed  Google Scholar 

  • Hamada T (2007) Microtubule-associated proteins in higher plants. J Plant Res (in press)

  • Hirase S (1896a) Spermatozoid of Ginkgo biloba (in Japanese). Bot Mag (Tokyo) 10:171–172

    Google Scholar 

  • Hirase S (1896b) On the spermatozoid of Ginkgo biloba (in Japanese). Bot Mag (Tokyo) 10:171–172

    Google Scholar 

  • Horio T (2007) Role of microtubules in tip growth of fungi. J Plant Res (in press)

  • Hush JM, Wadsworth P, Callaham DA, Hepler PK (1994) Quantification of microtubule dynamics in living plant cells using fluorescence redistribution after photobleaching. J Cell Sci 107:775–784

    PubMed  Google Scholar 

  • Ikeno S (1896) Spermatozoid of Cycas revoluta (in Japanese). Bot Mag (Tokyo) 10:367–368

    Google Scholar 

  • Inoué S, Bajer AS, Molè-Bajer J (1985) Three-dimensional distribution of microtubules in Haemanthus endosperm cells. In: De Brabander M, De May J (eds) Microtubules and microtubule inhibitors. Elsevier, Amsterdam, pp 269–276

    Google Scholar 

  • Ishida T, Thitamadee S, Hashimoto T (2007) Twisted growth and organization of cortical microtubules. J Plant Res (in press)

  • Lawrence CJ, Morris NR, Meagher RB, Dawe RK (2001) Dyneins have run their course in plant linage. Traffic 2:362–363

    Article  PubMed  CAS  Google Scholar 

  • Ledbetter MC, Porter KR (1963) A “microtubule” in plant cell fine structure. J Cell Biol 19:239–250

    Article  PubMed  Google Scholar 

  • Makino T (1961) Makino’s new illustrated flora of Japan. Hokuryukan, Tokyo

    Google Scholar 

  • Mineyuki Y (1999) The preprophase band of microtubules: its function as a cytokinetic apparatus in higher plants. Int Rev Cytol 187:1–49

    Article  Google Scholar 

  • Mineyuki Y, Shimamura M (2005) Membrane-associated microtubule-organizing centers in basal land plants. Cytologia 70:(3) i–ii

  • Mineyuki Y, Wick SM, Gunning BES (1988) Preprophase bands of microtubules and the cell cycle: kinetics and experimental uncoupling of their formation from the nuclear cycle in onion root-tip cells. Planta 174:518–526

    Article  CAS  Google Scholar 

  • Mineyuki Y, Iida H, Anraku Y (1994) Loss of microtubules in the interphase cells of onion (Allium cepa L.) root tips from the cell cortex and their appearance in the cytoplasm after treatment with cycloheximide. Plant Physiol 104:281–284

    PubMed  CAS  Google Scholar 

  • Mizukami I, Gall J (1966) Centriole replication: II. Sperm formation in the Fern, Marsilea, and the Cycad, Zamia. J Cell Biol 29:97–111

    Article  PubMed  CAS  Google Scholar 

  • Murata T, Hasebe M (2007) Microtubule-dependent microtubule nucleation in plants. J Plant Res (in press)

  • Murata T, Sonobe S, Baskin TI, Hyodo S, Hasezawa S, Nagata T, Horio T, Hasebe M (2005) Microtubule-dependent microtubule nucleation based on recruitment of gamma-tubulin in higher plants. Nat Cell Biol 7:961–968

    Article  PubMed  CAS  Google Scholar 

  • Myles DG, Hepler PK (1977) Spermiogenesis in the fern Marsilea microtubules, nuclear shaping, and cytomorphogenesis. J Cell Sci 23:57–83

    PubMed  CAS  Google Scholar 

  • Norstog K (1967) Fine structure of the spermatozoid of Zamia with special reference to the flagellar apparatus. Am J Bot 54:831–840

    Article  Google Scholar 

  • Palevitz BA (1988) Microtubular fir-trees in mitotic spindles of onion roots. Protoplasma 142:74–78

    Article  Google Scholar 

  • Paredez AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312:1491–1495

    Article  PubMed  CAS  Google Scholar 

  • Pickett-Heaps JD (1969) The evolution of the mitotic apparatus: an attempt at comparative cytology in dividing plant cells. Cytobios 1:257–280

    Google Scholar 

  • Pickett-Heaps JD, Northcote DH (1966a) Organization of microtubules and endoplasmic reticulum during mitosis and cytokinesis in wheat meristems. J Cell Sci 1:109–120

    CAS  Google Scholar 

  • Pickett-Heaps JD, Northcote DH (1966b) Cell division in the formation of the stomatal complex of the young leaves of wheat. J Cell Sci 1:121–128

    CAS  Google Scholar 

  • Pickett-Heaps JD, Tippit DH, Porter KR (1982) Rethinking mitosis. Cell 29:729–744

    Article  PubMed  CAS  Google Scholar 

  • Pickett-Heaps J, Gunning BE, Brown R, Lemmon B, Cleary A (1999) The cytoplast concept in dividing plant cells: cytoplasmic domains and the evolution of spatially organized cell. Am J Bot 86:153–172

    Article  Google Scholar 

  • Porter KR (1966) Cytoplasmic microtubules and their functions. Ciba foundation symposium on principles of biomolecular organization, London, pp 308–345

  • Robbins RR (1984) Origin and behavior of bicentriolar centrosomes in the bryophyte Riella americana. Protoplasma 121:114–119

    Article  Google Scholar 

  • Sabatini DD, Bensch KG, Barrnett RJ (1962) Preservation of ultrastructure and enzymatic activity of aldehyde fixation. J Histochem Cytochem 10:652–653

    Google Scholar 

  • Sharp LW (1912) Spermatogenesis in Equisetum. Bot Gazette 54:89–119

    Article  Google Scholar 

  • Sharp LW (1914) Spermatogenesis in Marsilea. Bot Gazette 58:419–431

    Article  Google Scholar 

  • Sharp LW (1934) Introduction to cytology. McGraw–Hill, New York

    Google Scholar 

  • Shaw SL, Kamyar R, Ehrhardt DW (2003) Sustained microtubule treadmilling in Arabidopsis cortical arrays. Science 300:1715–1718

    Article  PubMed  CAS  Google Scholar 

  • Shimamura M, Mineyuki Y, Deguchi H (1998) Meiotic cytokinetic apparatus in the formation of the linear spore tetrads of Conocephalum japonicum (Bryophyta). Planta 206:604–610

    Article  CAS  Google Scholar 

  • Shimamura M, Mineyuki Y, Deguchi H (2003) A review of the occurrence of monoplastidic meiosis in liverworts. J Hattori Bot Lab 94:179–186

    Google Scholar 

  • Shimamura M, Brown RC, Lemmon BE, Akashi T, Mizuno K, Nishihara N, Tomizawa K-I, Yoshimoto K, Deguchi H, Hosoya H, Horio T, Mineyuki Y (2004) γ-Tubulin in basal land plants: characterization, localization, and implication in the evolution of acentriolar microtubule organizing centers. Plant Cell 16:45–59

    Article  PubMed  CAS  Google Scholar 

  • Slautterback DB (1963) Cytoplasmic microtubules: I. Hydra J Cell Biol 18:367–388

    Article  CAS  Google Scholar 

  • Vaughn KC, Renzaglia KS (1998) Origin of bicentrioles in Anthocerote spermatogenous cells. In: Bates JW, Ashton NW, Duckett JD (eds) Bryology for the twenty-first Century. Maney Publishing and the British Bryological Society, Leeds

    Google Scholar 

  • Vos JW, Dogterom M, Emons AMC (2004) Microtubules become more dynamic but not shorter during preprophase band formation: a possible “search-and-capture” mechanism for microtubule translocation. Cell Motil Cytoskel 57:246–258

    Article  Google Scholar 

  • Wadsworth P (2003) Persistence pays. Science 300:1675–1677

    Article  PubMed  CAS  Google Scholar 

  • Walters SM, Bray A, Brickell CD, Cullen J, Green PS, Lewis J, Matthews VA, Webb DA, Yeo PF, Alexander JCM (eds) (1986) The European garden flora. Cambridge University Press, Canbridge

  • Wasteneys GO, Fujita M (2006) Establishing and maintaining axial growth: wall mechanical properties and the cytoskeleton. J Plant Res 119:5–10

    Article  PubMed  Google Scholar 

  • Wick SM (1985) Immunofluorescence microscopy of tubulin and microtubule arrays in plant cells. III. Transition between mitotic/cytokinetic and interphase microtubule arrays. Cell Biol Inter Rep 9:357–371

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author is grateful to all the contributors for providing excellent review articles in their respective areas of expertise, and to Professor Kazuo Nishitani, Editor-in-Chief of the Journal of Plant Research, for his advice and kind help in publishing paper from this JPR symposium. The author also thanks Professor Richard Cyr (Pennsylvania State University) and Dr Masaki Shimamura (Hiroshima University) for critical reading of the manuscript, and Mr Motomi Hayakawa (University of Hyogo) for preparing the figures. This article was partly supported by Grant-in-Aids for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology (No. 17049019) and from the Japan Society for the Promotion of Science (No. 17207006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshinobu Mineyuki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mineyuki, Y. Plant microtubule studies: past and present. J Plant Res 120, 45–51 (2007). https://doi.org/10.1007/s10265-006-0063-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-006-0063-y

Keywords

Navigation