Phylogenetic analyses of Malpighiales using plastid and nuclear DNA sequences, with particular reference to the embryology of Euphorbiaceae sens. str.

Abstract

We present phylogenetic analyses of Malpighiales, which are poorly understood with respect to relationships within the order, using sequences from rbcL, atpB, matK and 18SrDNA from 103 genera in 23 families. From several independent and variously combined analyses, a four-gene analysis using all sequence data provided the best resolution, resulting in the single most parsimonious tree. In the Malpighiales [bootstrap support (BS) 100%], more than eight major clades comprising a family or group of families successively diverged, but no clade containing more than six families received over 50% BS. Instead, ten terminal clades that supported close relationships between and among families (>50% BS) were obtained, between, for example, Balanopaceae and Chrysobalanaceae; Lacistemataceae and Salicaceae; and Phyllanthaceae and Picrodendraceae. The monophyly of Euphorbiaceae sens. str. were strongly supported (BS 100%), but its sister group was unclear. Euphorbiaceae sens. str. comprised two basally diverging clades (BS 100%): one leading to the Clutia group (Chaetocarpus, Clutia, Pera and Trigonopleura), and the other leading to the rest of the family. The latter shared a palisadal, instead of a tracheoidal exotegmen as a morphological synapomorphy. While both Acalyphoideae (excluding Dicoelia and the Clutia group) and Euphorbioideae are monophyletic, Crotonoideae were paraphyletic, requiring more comprehensive analyses.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. APG II (2003) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants. APG II. Bot J Linn Soc 141:399–436

    Google Scholar 

  2. Boesewinkel FD (1980) Development of ovule and testa of Linum usitatissimum L. Acta Bot Neerl 29:17–32

    Google Scholar 

  3. Boesewinkel FD (1985) The ovule and seed of Humiria balsamifera (Aubl.) St.Hil. Acta Bot Neerl 34:183–191

    Google Scholar 

  4. Boesewinkel FD, Bouman F (1980) Development of ovule and seed-coat of Dichapetalum mombuttense Engl. with notes on other species. Acta Bot Neerl 29:103–115

    Google Scholar 

  5. Boesewinkel FD, Geenen J (1980) Development of ovule and seed-coat of Erythroxylum coca Lamk. Acta Bot Neerl 29:231–241

    Google Scholar 

  6. Chase MW, Zmarzty S, Lledó MD, Wurdack KJ, Swensen SM, Fay MF (2002) When in doubt, put it in Flacourtiaceae: a molecular phylogenetic analysis based on plastid rbcL DNA sequences. Kew Bull 57:141–181

    Google Scholar 

  7. Corner EJH (1976) The seeds of dicotyledons. Cambridge University Press, Cambridge

    Google Scholar 

  8. Dathan ASR, Singh D (1971) Embrylogy and seed-development in Bergia L. J Indian Bot Soc 50:362–370

    Google Scholar 

  9. Dathan ASR, Singh D (1973a) Structure and development of ovule and seed in Flacourtia indica (Burn.F) Merrill. Proc Indian Natl Sci Acad Part B Biol Sci 39:172–179

    Google Scholar 

  10. Dathan ASR, Singh D (1973b) Structure and development of seed coat in Viola spp. J Indian Bot Soc 52:119–126

    Google Scholar 

  11. Dathan ASR, Singh D (1973c) Development and structure of seed in Tacsonia Juss. and Passiflora L. Proc Indian Acad Sci Sect B 77:5–18

    Google Scholar 

  12. Davis CC, Chase MW (2004) Elatinaceae are sister to Malpighiaceae; Peridiscaceae belong to Saxifragales. Am J Bot 91:262–273

    Google Scholar 

  13. Davis CC, Wurdack KJ (2004) Host-to-parasite gene transfer in flowering plants: phylogenetic evidence from Malpighiales. Science 305:676–678

    PubMed  CAS  Article  Google Scholar 

  14. Davis CC, Webb CO, Wurdack KJ, Jaramillo CA, Donoghue MJ (2005) Explosive radiation of Malpighiales supports a Mid-Cretaceous origin of modern tropical rain forests. Am Nat 165:E36–E65

    PubMed  Article  Google Scholar 

  15. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  16. Hasebe M, Omori T, Nakazawa M, Sano T, Kato M, Iwatsuki K (1994) rbcL sequences provide evidence for the evolutionary lineages of leptosporangiate ferns. Proc Natl Acad Sci USA 91:5730–5734

    PubMed  CAS  Article  Google Scholar 

  17. van Heel WA (1973) Flowers and fruits in Flacourtiaceae I Scaphocalyx spathacea Ridl. Blumea 21:259–279

    Google Scholar 

  18. van Heel WA (1979) Flowers and fruits in Flacourtiaceae IV Hydnocarpus spp. Kiggelaria africana L., Casearia spp., Berberidopsis corallina Hook.f. Blumea 25:513–529

    Google Scholar 

  19. Hilu KW, Borsch T, Müller K, Soltis DE, Soltis PS, Savolainen V, Chase MW, Powell MP, Alice LA, Evans R, Sauquet H, Neinhuis C, Slotta TAB, Rohwer JG, Campbell CS, Chatrou LW (2003) Angiosperm phylogeny based on matK sequence information. Am J Bot 90:1758–1776

    CAS  Google Scholar 

  20. Kathriarachchi H, Hoffmann P, Samuel R, Wurdack KJ, Chase MW (2005) Molecular phylogenetics of Phyllanthaceae inferred from five genes (plastid atpB, matK, 3’ ndhF, rbcL, and nuclear PHYC). Mol Phylogenet Evol 36:112–134

    PubMed  CAS  Article  Google Scholar 

  21. Mason-Gamer RJ, Kellogg EA (1996) Testing for phylogenetic conflict among molecular data sets in the tribe Triticeae (Gramineae). Syst Biol 45(4):524–545

    Article  Google Scholar 

  22. Mauritzon J (1936) Zur embrylgie einiger Parietales-Familien Svensk bot Tidskr 30:79–113

    Google Scholar 

  23. Netolitzky F (1926) Anatomie der Angiospermen-Samen. Berlin

  24. Nickrent DL, Starr EM (1994) High rates of nucleotide substitution in nuclear small-subunit (18S) rDNA from holoparasitic flowering plants. J Mol Evol 39:62–70

    PubMed  CAS  Article  Google Scholar 

  25. Ooi K, Endo Y, Yokoyama J, Murakami N (1995) Useful primer designs to amplify DNA fragments of the plastid gene matK from angiosperm plants. J Jap Bot 70:328–331

    Google Scholar 

  26. Pax F, Hoffmann K (1931) Euphorbiaceae. In: Engler A, Prantl K (eds) Die Natürlichen Pflanzenfamilien, 2nd edn, vol 19c, pp 11–233

  27. Raju MVS (1936) Development of embryo and seed coat in Turnera ulmifolia L. var. angustifolia Willd. Bot Not 1936:308–312

    Google Scholar 

  28. Raju MVS (1952) Embryology of the Passifloraceae. Curr Sci 10:288–289

    Google Scholar 

  29. Raju MVS (1956) Embryology of the Passifloraceae I Gametogenesis and seed development of Passiflora calcarata Mast. J Indian Bot Soc 35:126–138

    Google Scholar 

  30. Raju MVS (1958) Seed development and fruit dehiscence in Ionidium suffruticosum Ging. Phytomorphology 8:218–224

    Google Scholar 

  31. Rao AN (1957) The embryology of Hypericum patulum Thunb. and H. mysorense Hyene. Phytomorphology 7:139–149

    Google Scholar 

  32. Savolainen V, Fay MF, Albach DC, Backlund A, van der Bank M, Cameron KM, Johnson SA, Lledó MD, Pintaud JC, Powell M, Sheahan MC, Soltis DE, Soltis PS, Weston P, Whitten WM, Wurdack KJ, Chase MW (2000a) Phylogeny of the eudicots: a nearly complete familial analysis based on rbcL gene sequences. Kew Bull 55:257–309

    Google Scholar 

  33. Savolainen V, Chase MW, Hoot SB, Morton CM, Soltis DE, Bayer C, Fay MF, Bruijn AY de, Sullivan S, Qiu YL (2000b) Phylogenetics of flowering plants based on combined analysis of plastid atpB and rbcL gene sequences. Syst Biol 49:306–362

    PubMed  CAS  Article  Google Scholar 

  34. Setoguchi H, Tobe H, Ohba H (1992) Seed coat anatomy of Crossostylis (Rhizophoraceae): its evolutionary and systematic implications. Bot Mag Tokyo 105:625–638

    Article  Google Scholar 

  35. Setoguchi H, Kosuge K, Tobe H (1999) Molecular phylogeny of Rhizophoraceae based on rbcL gene sequences. J Plant Res 112:443–455

    CAS  Article  Google Scholar 

  36. Singh D (1963) Structure and development of ovule and seed of Viola tricolor L. and Ionidium suffruticosum Ging. J Indian Bot Soc 42:448–462

    Google Scholar 

  37. Soltis DE, Soltis PS, Chase MW, Mort ME, Albach DC, Zanis M, Savolainen V, Hahn WH, Hoot SB, Fay MF, Axtell M, Swensen SM, Prince LM, Kress WJ, Nixon KC, Farris JS (2000) Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Bot J Linn Soc 133:381–461

    Article  Google Scholar 

  38. Stevens PF (2005) Angiosperm Phylogeny Website. Version 6, May 2005. http://www.mobot.org/MOBOT/research/APweb/

  39. Stuppy W (1996) Systematische Morphologie und Anatomie der Samen der biovulaten Euphorbiaceen. Diss Kaiserslautern

  40. Swofford DL (2001) PAUP: Phylogenetic analysis using parsimony, ver 4.0b10. Sinauer, Sunderland, MA

  41. Tobe H, Raven PH (1984) An embryological contribution to systematics of the Chrysobalanaceae I Tribe Chrysobalaneae. Bot Mag Tokyo 97:397–411

    Article  Google Scholar 

  42. Tobe H, Raven PH (1987) The embryology and relationships of Cassipourea and Sterigmapetalum (Rhizophoraceae-Macarisieae). Opera Bot 92:253–264

    Google Scholar 

  43. Tokuoka T, Tobe H (1995) Embryology and systematics of Euphorbiaceae sens. lat.: a review and perspective. J Plant Res 108:97–96

    Article  Google Scholar 

  44. Tokuoka T, Tobe H (1998) Ovules and seeds in Crotonoideae (Euphorbiaceae): structure and systematic implications. Bot Jahrb Syst 120:165–186

    Google Scholar 

  45. Tokuoka T, Tobe H (1999) Embryology of tribe Drypeteae, an enigmatic taxon of Euphorbiaceae. Plant Syst Evol 215:189–208

    Article  Google Scholar 

  46. Tokuoka T, Tobe H (2001) Ovules and seeds in subfamily Phyllanthoideae (Euphorbiaceae): structure and systematic implications. J Plant Res 114:75–92

    Article  Google Scholar 

  47. Tokuoka T, Tobe H (2002) Ovules and seeds in Euphorbioideae (Euphorbiaceae): structure and systematic implications. J Plant Res 115:361–374

    PubMed  Article  Google Scholar 

  48. Tokuoka T, Tobe H (2003) Ovules and seeds in Acalyphoideae (Euphorbiaceae): structure and systematic implications. J Plant Res 116:355–380

    PubMed  Article  Google Scholar 

  49. Webster GL (1987) The saga of the spurges: a review of classification and relationships in the Euphorbiales. Bot J Linn Soc 94:3–46

    Google Scholar 

  50. Webster GL (1994a) Classification of the Euphorbiaceae. Ann Mo Bot Gard 81:3–32

    Article  Google Scholar 

  51. Webster GL (1994b) Synopsis of the genera and suprageneric taxa of Euphorbiaceae. Ann Mo Bot Gard 81:33–144

    Article  Google Scholar 

  52. Wurdack KJ (2002) The molecular systematics and evolution of Euphorbiaceae sensu lato. Ph.D. dissertation, University of North Carolina, Chapel Hill, NC

  53. Wurdack KJ, Hoffman P, Chase MW (2005) Molecular phylogenetic analysis of uniovulate Euphorbiaceae (Euphorbiaceae sensu stricto) using plastid rbcL and trnL-F sequences. Am J Bot 92:1397–1420

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Hiroaki Setoguchi, Yukitoshi Kimoto, Kipiro Damas, Jun-ichi Nagasawa and Shigeru Matsutani, as well as to the curators of MO, L and E, for their assistance in obtaining materials used in the study. The study was supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (17770069) and a grant for Biodiversity Research of the 21st Century COE (A14).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Toru Tokuoka.

Appendix 1 References for information on seed coat structure of families and genera in Malpighiales.

Appendix 1 References for information on seed coat structure of families and genera in Malpighiales.

Achariaceae: Hydnocarpus (Corner 1976; van Heel 1979); Kiggelaria (Mauritzon 1936); Scaphocalyx (van Heel 1973).

Elatinaceae: Bergia (Corner 1976; Dathan and Singh 1971).

Chrysobalanaceae: Chrysobalanus (Tobe and Raven 1984); Licania (Tobe and Raven 1984); Dichapetalum (Boesewinkel and Bouman 1980).

Clusiaceae: Clusia (Corner 1976); Havetiopsis (Corner 1976); Pentadesma (Corner 1976); Tovomitopsis (Corner (1976).

Euphorbiaceae: 34 genera of Euphorbioideae (Tokuoka and Tobe 2002); 40 genera of Crotonoideae (Tokuoka and Tobe 1998); 70 genera of Acalyphoideae (Tokuoka and Tobe 2003).

Humiriaceae: Humiria (Boesewinkel 1985).

Hypericaceae: Cratoxylum (Corner 1976; Hypericum-Rao 1957).

Irvingiaceae: Desbordesia (Netolitzky 1926).

Ixonanthaceae: Ixonanthes (Corner 1976).

Linaceae: Limum (Boesewinkel 1980).

Malpighiaceae: Heteropteris (Corner 1976); Thryallis (Corner 1976); Tristellateia (Corner 1976).

Ochnaceae: Ochna (Corner 1976).

Pandaceae: Microdesmis (Tokuoka and Tobe 2003).

Passifloraceae: Adenia (Corner 1976); Paropsia (Corner 1976); Passiflora (Raju 1952, 1956; Dathan and Singh 1973c; Turnera-Raju 1936).

Phyllanthaceae: 46 genera (Tokuoka and Tobe 2001).

Picrodendraceae: 23 genera (Stuppy 1996).

Putranjivaceae: Drypetes (Tokuoka and Tobe 1999).

Rhizophoraceae: Cassipourea (Tobe and Raven 1987); Crossostylis (Setoguchi et al. 1992); Erythroxylum (Boesewinkel and Geenen 1980); Sterigmapetalum (Tobe and Raven 1987).

Salicaceae: Casearia (Corner 1976); Flacourtia (Corner 1976; Dathan and Singh 1973a); Oncoba (Corner 1976).

Violaceae: Ionidium (Raju 1958; Singh 1963); Rinorea (Corner 1976); Viola (Corner 1976; Dathan and Singh (1973b; Singh 1963).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tokuoka, T., Tobe, H. Phylogenetic analyses of Malpighiales using plastid and nuclear DNA sequences, with particular reference to the embryology of Euphorbiaceae sens. str.. J Plant Res 119, 599–616 (2006). https://doi.org/10.1007/s10265-006-0025-4

Download citation

Keywords

  • atpB
  • Euphorbiaceae
  • Malpighiales
  • matK
  • rbcL
  • 18S rDNA