Skip to main content
Log in

Pb hyperaccumulation and tolerance in common buckwheat (Fagopyrum esculentum Moench)

  • Short Communication
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Common buckwheat grown in Pb-contaminated soil was found to accumulate a large amount of Pb in its leaves (8,000 mg/kg DW), stem (2,000 mg/kg DW), and roots (3,300 mg/kg DW), without significant damage. This indicates that buckwheat is a newly recognized Pb hyperaccumulator, which is defined as a plant containing over 1,000 mg/kg of Pb in its shoots on a dry-weight basis. Moreover, it was shown that application of the biodegradable chelator methylglycinediacetic acid trisodium salt at concentrations of up to 20 mmol/kg resulted in a more than five times higher concentration of Pb in the shoot without notable growth inhibitation at up to 10 mmol/kg. These results indicate that buckwheat is a potential phytoremediator of Pb-contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–c

References

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31:860–865

    Article  Google Scholar 

  • Boonyapookana B, Parkpian P, Techapinyawat S, DeLaune RD, Jugsujinda A (2005) Phytoaccumulation of lead by sunflower (Helianthus annuus), tobacco (Nicotiana tabacum), and vetiver (Vetiveria zizanioides). J Environ Sci Health A 40:117–137

    Article  CAS  Google Scholar 

  • Bricker TJ, Pichtel J, Brown HJ, Simmons M (2001) Phytoextraction of Pb and Cd from Superfund soil: effect of amendments and croppings. J Environ Sci Health A 36:1597–1610

    CAS  Google Scholar 

  • Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284

    Article  PubMed  CAS  Google Scholar 

  • Cunningham SD, Berti WR (1993) Remediation of contaminated soils with green plants: an overview. In Vitro Cell Dev Biol 29(P):207–212

    Google Scholar 

  • Cunningham SD, Berti WR, Huang JW (1995) Phytoremediation of contaminated soils. Tibtech 13:393–397

    CAS  Google Scholar 

  • Demayo YA, Taylor MC, Taylor KW, Hodson PV (1982) Toxic effects of lead and lead compounds on human health, aquatic life, wildlife plants, and livestock. Crit Rev Environ Control 12:257–305

    CAS  Google Scholar 

  • Edwardson S (1996) Buckwheat: pseudocereal and nutraceutical. In: Janick J (ed) Progress in new crops. ASHS, Alexandria, VA, pp 195–207

    Google Scholar 

  • Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16:2176–2191

    Article  PubMed  CAS  Google Scholar 

  • Garbisu C, Alkorta I (2001) Phytoextaction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour Technol 77:229–236

    Article  PubMed  CAS  Google Scholar 

  • Gerike P, Fisher WK (1979) A correlation study of biodegradability determinations with various chemicals in various tests. Ecotoxicol Environ Saf 3:159–173

    Article  PubMed  CAS  Google Scholar 

  • Grčman H, Vodnik D, Velikonja-Bolta Š, Leštan D (2003) Ethylendiaminedissuccinate as a new chelate for environmentally safe enhanced lead phytoextraction. J Environ Qual 32:500–506

    PubMed  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  PubMed  CAS  Google Scholar 

  • Honjo T, Hatta A, Taniguchi K (1984) Characterization of heavy metals in indicator plants—studies on the accumulation of lead and tolerance of gregarious fern, Athyrium yokoscense, in the polluted areas from the lead tile of the ruins of Kanazawa Castle, now the campus of Kanazawa University. J Phytogeogr Taxon 32:68–80

    Google Scholar 

  • Huang JW, Chen J, Cunningham SD (1997) Phytoextraction of lead from contaminated soils. Am Chem Soc Symp Ser 664:283–298

    CAS  Google Scholar 

  • Kambhampati MS, Begonia GB, Brgonia MFT, Bufford Y (2003) Phytoremediation of a lead-contaminated soil using morning glory (Ipomoea lacunose L.): effect of a synthetic chelate. Bull Environ Contam Toxicol 71:379–386

    Article  PubMed  CAS  Google Scholar 

  • Koeppe DE (1977) The uptake distribution and effect of cadmium and lead in plants. Sci Total Environ 7:197–206

    Article  CAS  Google Scholar 

  • Kumar NPBA, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238

    Article  CAS  Google Scholar 

  • Li S, Zhang QH (2001) Advances in the development of functional foods from buckwheat. Crit Rev Food Sci Nutr 41:451–464

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Dhankher OP, Carreira L, Lee D, Chen A, Schroeder JI, Balish RS, Meagher RB (2004) Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity. Plant Cell Physiol 45:1787–1797

    PubMed  CAS  Google Scholar 

  • Ma JF, Hiradate S (2000) Form of aluminium for uptake and translocation in buckwheat (Fagopyrum esculentum Moench). Planta 211:355–360

    Article  PubMed  CAS  Google Scholar 

  • Ma JF, Zheng SJ, Matsumoto H, Hiradate S (1997) Detoxifying aluminium with buckwheat. Nature 390:569–570

    Article  Google Scholar 

  • McGrath SP, Zhao FJ, Lombi E (2001) Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant Soil 232:207–214

    Article  CAS  Google Scholar 

  • Ohnishi O (1998) Search for the wild ancestor of buckwheat. I. Description of new Fagopyrum (Polygonaceae) species and their distribution in China and the Himalayan hills. Fagopyrum 15:18–28

    Google Scholar 

  • Pence NS, Larsen PB, Ebbs SD, Letham DLD, Lasat MM, Garvin DF, Eide D, Kochian LV (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci USA 97:4956–4960

    Article  PubMed  CAS  Google Scholar 

  • Sahi SV, Bryant NL, Sharma NC, Singh SR (2002) Characterization of a lead hyperaccumulator shrub, Sesbania drummondii. Environ Sci Technol 36:4676–4680

    Article  PubMed  Google Scholar 

  • Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474

    PubMed  CAS  Google Scholar 

  • Schollenberger CJ, Simon RH (1945) Determination of exchange capacity and exchangeable bases in soil-ammonium acetate method. Soil Sci 59:13–24

    CAS  Google Scholar 

  • Shen R, Ma JF, Kyo M, Iwashita T (2002) Compartmentation of aluminium in leaves of an Al-accumulator, Fagopyrum esculentum Moench. Planta 215:394–398

    Article  PubMed  CAS  Google Scholar 

  • Singh RP, Tripathi RD, Sinha SK, Maheshwari R, Srivastava HS (1997) Response of higher plants to lead contaminated environment. Chemosphere 34:2467–2493

    Article  PubMed  CAS  Google Scholar 

  • Xue SG, Chen YX, Reeves RD, Baker AJM, Lin Q, Fernando DR (2004) Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb (Phytolaccaceae). Environ Pollut 131:393–399

    Article  PubMed  CAS  Google Scholar 

  • Yang YY, Jung JY, Song WY, Suh HS, Lee Y (2000) Identification of rice varieties with high tolerance or sensitivity to lead and characterization of the mechanism of tolerance. Plant Physiol 124:1019–1026

    Article  PubMed  CAS  Google Scholar 

  • Zhu YL, Pilon-Smits EAH, Jouanin L, Terry N (1999) Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 119:73–79

    CAS  Google Scholar 

Download references

Acknowledgements

We express our gratitude to Ms. Yoko Hibino of the Tajimi City Office for providing soil materials, Prof. Isao Hasegawa of Nihon University for helpful suggestions, and Mr. Hajime Umeda of Techno Chubu for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Tamura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamura, H., Honda, M., Sato, T. et al. Pb hyperaccumulation and tolerance in common buckwheat (Fagopyrum esculentum Moench). J Plant Res 118, 355–359 (2005). https://doi.org/10.1007/s10265-005-0229-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-005-0229-z

Keywords

Navigation