Skip to main content

Taxonomic and phytogeographic implications from ITS phylogeny in Berberis (Berberidaceae)

Abstract

A phylogeny based on the internal transcribed spacer (ITS) sequences from 79 taxa representing much of the diversity of Berberis L. (four major groups and 22 sections) was constructed for the first time. The phylogeny was basically congruent with the previous classification schemes at higher taxonomic levels, such as groups and subgroups. A notable exception is the non-monophyly of the group Occidentales of compound-leaved Berberis (previously separated as Mahonia). At lower levels, however, most of previous sections and subsections were not evident especially in simple-leaved Berberis. Possible relationship between section Horridae (group Occidentales) and the simple-leaved Berberis clade implies paraphyly of the compound-leaved Berberis. A well-known South America-Old World (mainly Asia) disjunctive distribution pattern of the simple-leaved Berberis is explained by a vicariance event occurring in the Cretaceous period. The ITS phylogeny also suggests that a possible connection between the Asian and South American groups through the North American species (Berberis canadensis or B. fendleri) is highly unlikely.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Ahrendt L (1961) Berberis and Mahonia, a taxonomic revision. Bot J Linn Soc 57:1–410

    Google Scholar 

  2. Cronquist A (1981) An integrated system of classification of flowering plants. Columbia University, New York

  3. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  4. Fedde F (1902) Versuch einer Monographie der Gattung Mahonia. Bot Jahrb Syst 31:30–133

    Google Scholar 

  5. Felsenstein J (1985) Confidence limits on phylogenies: an approach using bootstrap. Evolution 39:783–791

    Google Scholar 

  6. Felsenstein J (1988) Phylogenies from molecular sequences: inference and reliability. Annu Rev Genet 22:521–565

    CAS  PubMed  Google Scholar 

  7. Hoot SB, Crane PR (1995) Inter-familial relationships in the Ranunculidae based on molecular systematics. Plant Syst Evol 9[Suppl]:119–131

    Google Scholar 

  8. Huelsenbeck JP, Ronquist FR (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Google Scholar 

  9. Judd WS, Campbell CS, Kellog EA, Stevens PF, Donoghue MJ (2002) Plant systematics: a phylogenetic approach. Sinauer, Sunderland

    Google Scholar 

  10. Kim K-J, Jansen RK (1994) Comparison of phylogenetic hypotheses among different data sets in dwarf dandelions (Krigia): additional information from internal transcribed spacer sequences of nuclear ribosomal DNA. Plant Syst Evol 190:157–185

    CAS  Google Scholar 

  11. Kim Y-D, Jansen RK (1995) Phylogenetic implication of the chloroplast DNA variation from the Berberidaceae. Plant Syst Evol 9[Suppl]:341–349

    Google Scholar 

  12. Kim Y-D, Jansen RK (1998) Chloroplast DNA restriction site variation and phylogeny of the Berberidaceae. Am J Bot 85:1766–1778

    CAS  Google Scholar 

  13. Lafferriere JE (1997) Transfer of specific and infraspecific taxa from Mahonia to Berberis (Berberidaceae). Bot Zhurn 82:95–99

    Google Scholar 

  14. Landrum L (1981) The phylogeny and geography of Myrceugenia (Myrtaceae). Brittonia 33:105–129

    Google Scholar 

  15. Landrum L (1999) Revision of Berberis (Berberidaceae) in Chile and adjacent southern Argentina. Ann Mo Bot Gard 86:793–834

    Google Scholar 

  16. Loconte H, Estes JR (1989) Phylogenetic systematics of Berberidaceae and Ranunculales (Magnoliidae). Syst Bot 14:565–579

    Google Scholar 

  17. Loockerman DJ, Jansen RK (1996) The use of herbarium material for DNA studies. In: Stussey TF, Sohmer S (eds) Sampling the green world. Columbia University, New York, pp 205–220

  18. Magallon S, Sanderson MJ (2001) Absolute diversification rates in angiosperm clades. Evolution 55:1762–1780

    CAS  PubMed  Google Scholar 

  19. Meacham CA (1980) Phylogeny of the Berberidaceae with an evaluation of classifications. Syst Bot 5:149–172

    Google Scholar 

  20. Orsi MC (1976) Sinopsis de las especies Argentinas del género Berberis (Berberidaceae). Bol Soc Argent Bot 17:127–149

    Google Scholar 

  21. Rannala B, Yang Z (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J Mol Evol 43:304–311

    CAS  PubMed  Google Scholar 

  22. Raven PH, Axelrod DI (1974) Angiosperm biogeography and past continental movements. Ann Mo Bot Gard 61:539–673

    Google Scholar 

  23. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  24. Schnabel A, Wendel JF (1998) Cladistic biogeography of Gleditsia (Leguminosae) based on ndhF and rpl16 chloroplast gene sequences. Am J Bot 85:1753–1765

    CAS  Google Scholar 

  25. Schneider CK (1905) Die Gattung Berberis (Euberberis). Vorarbeiten für eine Monographie. Bull Herb Boissier Ser 2 5:33–48, 133–148, 391–403, 449–464, 655–670, 800–812, 813–831

    Google Scholar 

  26. Soltis DE, Tago-Nakazawa M, Xiang Q-Y, Kawano S, Murata J, Wakabayashi M, Hibsch-Jetter C (2001) Phylogenetic relationships and evolution in Chrysosplenium (Saxifragaceae) based on matK sequence data. Am J Bot 88:883–893

    PubMed  Google Scholar 

  27. Suh Y, Thien LB, Reeve HE, Zimmer EA (1993) Molecular evolution and phylogenetic implications of internal transcribed spacer sequences of ribosomal DNA in Winteraceae. Am J Bot 80:1042–1055

    CAS  Google Scholar 

  28. Swofford DL (2002) PAUP*, phylogenetic analysis using parsimony (*and other methods), version 4.0b. Sinauer, Sunderland

  29. Swofford DL, Olsen GJ, Waddell PJ, Hillis DM (1996) Phylogenetic inference. In: Hillis DM, Moritz C, Mable BK (eds) Molecular systematics, 2nd edn. Sinauer, Sunderland, pp 407–514

  30. Terabayashi S (1985) The comparative floral anatomy and systematics of the Berberidaceae. II. Systematic considerations. Acta Phytotax Geobot 36:1–13

    Google Scholar 

  31. Thompson JD, Higgins DG, Gibson TJ (1995) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Google Scholar 

  32. Thorne RF (1972) Major disjunctions in the geographic ranges of seed plants. Q Rev Biol 47:365–411

    Article  Google Scholar 

  33. White TJ, Birns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand D, Sninsky J, White T (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–322

  34. Whittemore AT (1997) Berberis. In: Morin NR (ed) Flora of North America, vol 3. Oxford University Press, New York, pp 276–286

  35. Yang Z (1994) Estimating the pattern of nucleotide substitution. J Mol Evol 39:105–111

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank Arnold Arboretum, Gray Herbarium, Edinburgh Botanical Garden, University of Texas Herbarium, Drs. J. Panero, and M. Chase for providing leaf or DNA materials, and Dr. C. Ulloa for identifying some South American species. This work was supported by grant (2000-2-201-00-001-2) from the Korea Science and Engineering Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Young-Dong Kim.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, YD., Kim, SH. & Landrum, L.R. Taxonomic and phytogeographic implications from ITS phylogeny in Berberis (Berberidaceae). J Plant Res 117, 175–182 (2004). https://doi.org/10.1007/s10265-004-0145-7

Download citation

Keywords

  • Berberis
  • ITS
  • Mahonia
  • Phylogeny
  • Phytogeography
  • Vicariance