Skip to main content

Advertisement

Log in

Phylogenetic relationships in the genera Zostera and Heterozostera (Zosteraceae) based on matK sequence data

  • Original Article
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Phylogenetic analysis of the plastid (chloroplast) DNA matK gene of Zosteraceae species was undertaken. A molecular phylogenetic tree based on matK sequence data showed the monophyly of Heterozostera tasmanica and subgenus Zosterella and did not support the separation of Heterozostera from the genus Zostera. The tree based on matK supported the monophyly of the subgenus Zostera, and showed that Zosteraceae consist of three main groups: Phyllospadix, which is clearly defined by being dioecious; the subgenus Zosterella and Heterozostera; and the subgenus Zostera. Character-state reconstruction of chromosome number and geographic distribution for our molecular phylogenetic tree showed that 2n=12 is a plesiomorphic character for Zostera and Heterozostera, that the chromosome number was doubled or tripled in two lineages, and that the initial speciation of Zostera and Heterozostera occurred in the Northern Hemisphere. The matK tree showed the close affinity of Z. noltii and Z. japonica, which have disjunct distributions. Zostera marina, which is the only widely distributed species in the subgenus Zostera, also occurring in the northern Atlantic, was shown to be embedded within other subgenus Zostera species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2a–c.
Fig. 3.
Fig. 4.

References

  • Aioi K (2000) A daybreak in the studies on Japanese Zostera beds (in Japanese with English abstract). Aquabiology 131:516–523

    Google Scholar 

  • Ascherson P (1868) Vorarbeiten zu einer Ubersicht der phanerogamen Meergewachse. Linnaea 35:152–208

    Google Scholar 

  • Cook CDK (1990) Aquatic plant book. SPB Academic, Amsterdam

  • Dahlgren RMT, Clifford HT, Yeo PF (1985) The families of the monocotyledons. Springer, Berlin Heidelberg New York

  • Dott RH, Batten RL (1981) Evolution of the earth, 3rd edn. McGraw-Hill, New York

  • Eckardt T (1964) Monocotyledonae. 1. Reihe Helobiae. In: Melchior H (ed) A. Engler's Syllabus der Pflanzenfamilien, 12th edn. Springer, Berlin Heidelberg New York

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Felsenstein J (1993) Phylogeny inference package (PHYLIP), version 3.5c. University of Washington, Seattle

  • HartogC den (1970) The sea-grasses of the world. North-Holland, Amsterdam

  • Hasebe M, Omori T, Nakazawa M, Sano T, Kato M, Iwatsuki K (1994) rbcL gene sequences provide evidence for the evolutionary lineages of leptosporangiate ferns. Proc Natl Acad Sci USA 91:5730–5734

    CAS  PubMed  Google Scholar 

  • Hodkinson TR, Chase MW, Lledo D, Salamin N, Renvoize SA (2002) Molecular phylogeny of Miscanthus s.l., Saccharum and related genera (Saccharinae, Andropogoneae, Poaceae) using DNA sequences from ITS nuclear ribosomal DNA and the plastid trnL-F regions. J Plant Res 115:381–392

    CAS  PubMed  Google Scholar 

  • Hutchinson J (1959) The families of flowering plants. 2. Monocotyledons, 2nd edn. Clarendon Press, Oxford

  • Johnson LA, Soltis DE (1994) matK sequences and phylogenetic reconstruction in Saxifragaceae s. s. Syst Bot 19:143–156

    Google Scholar 

  • Johnson LA, Soltis DE (1995) Phylogenetic inference in Saxifragaceae sensu stricto and Gilia (Polemoniaceae) using matK sequences. Ann Mo Bot Gard 82:149–175

    Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    PubMed  Google Scholar 

  • Koriba K, Miki S (1931) On Archeozostera from the Izumi Sandstone (in Japanese). Chikyu (The Globe) 15:165–201

    Google Scholar 

  • Koriba K, Miki S (1958) Archeozostera, a new genus from upper Cretaceous in Japan. Palaeobotanist 7:107–110

    Google Scholar 

  • Kuo J (2001) Chromosome number of the Australian Zosteraceae. Plant Syst Evol 226:155–163

    Article  Google Scholar 

  • Kuo J, den Hartog C (2001) Seagrass taxonomy and identification key. In: Short FT, Coles RG (eds) Global seagrass research methods. Elsevier, Amsterdam, pp 31–58

  • Kuo J, McComb AJ (1998) Zosteraceae. In: Kubitzki K (ed) The families and genera of vascular plants, vol IV. Springer, Berlin Heidelberg New York, pp 496–502

  • Kuo J, Seto K, Nasu T, Iuzumi H, Aioi K (1989) Notes on Archaeozostera in relation to the Zosteraceae. Aquat Bot 34:317–328

    Google Scholar 

  • Larkum AWD, den Hartog C (1989) Evolution and biogeography of seagrasses. In: Larkum AWD, McComb AJ, Sheherd SA (eds) Biology of seagrasses. A treatise on the biology of seagrasses with special reference to the Australian region. Elsevier, Amsterdam, pp 112–156

  • Les DH, Cleland MA, Waycott M (1997) Phylogenetic studies in Alismatidae. II. Evolution of marine angiosperms (seagrasses) and hydrophily. Syst Bot 22:443–463

    Google Scholar 

  • Maddison WP (1989) Reconstructing character evolution on polytomous cladograms. Cladistics 5:365–377

    Google Scholar 

  • Maddison WP, Maddison DR (1992) MacClade: analysis of phylogeny and character evolution, version 3.0. Sinauer, Sunderland, Mass.

    Google Scholar 

  • Miki S (1933) On the sea-grasses in Japan. (I) Zostera and Phyllospadix, with special reference to morphological and ecological characters. Bot Mag (Tokyo) 47:842–862

    Google Scholar 

  • Omori Y (1992) Geographical variation of the size and spathe and the number of flowers among the four species of the subgenus Zostera (Zosteraceae). Sci Rep Yokosuka City Mus 40:69–74

    Google Scholar 

  • Omori Y (1993) Seed coat anatomy of subgenus Zostera. Proceedings of international workshop on seagrass biology, Kominato 1993, pp 45–50

  • Omori Y (1996) Rhizome morphology of the subgenus Zostera (Zosteraceae). Sci Rep Yokosuka City Mus 44:55–62

    Google Scholar 

  • Penhallow DP (1900) The Pleistocene flora of the Don Valley. Bradford meeting of the British Association for the Advancement of Science, pp 334–339

  • Phillips RC, Menez EG (1988) Seagrasses.Smithsonian contribution to marine science no. 34. Smithsonian Institution Press, Washington

  • Ruckelshaus MH (1996) Estimation of genetic neighborhood parameters from pollen and seed dispersal in the marine angiosperm Zostera marina L. Evolution 50:856–864

    Google Scholar 

  • Saito N, Nei M (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Setchell WA (1933) A preliminary survey of the species of Zostera. Proc Natl Acad Sci USA 19:810–817

    Google Scholar 

  • Stanley SM (1987) Extinction. Scientific American Books, New York

  • Swofford DL (2001) PAUP* 4.0: Phylogenetic analysis using parsimony, beta version 8. Sinauer, Sunderland, Mass.

  • Takhtajan A (1966) Systema et Phylogenia Magnoliophytorum. Nauka, Moscow

  • Tanaka N, Setoguchi H, Murata J (1997) Phylogeny of the family Hydrocharitaceae inferred from rbcL and matK gene sequence data. J Plant Res 110:329–337

    CAS  Google Scholar 

  • Tomlinson PB (1982) Anatomy of the monocotyledons VII. Helobiae (Alismatidae). Clarendon Press, Oxford

  • Tomlinson PB, Posluszny U (2001) Generic limits in the seagrass family Zosteraceae. Taxon 50:429–437

    Google Scholar 

  • Uchiyama H (1996) An easy method for investigating molecular systematic relationships in the genus Zostera, Zosteraceae. In: Kuo J, Phillips RC, Walker DI, Kirkman H (eds) Seagrass biology. Proceedings of an international workshop on seagrass biology, Rottnest Island, 25–29 January 1996. Faculty of Science, The University of Western Australia, Perth, pp 79–84

Download references

Acknowledgements

The authors thank Jin Murata for helpful comments on the manuscript, and Koichi Morita, Jun Michimata, Spencer Wood, Seiichi Tamura, Naho Miyamoto and Masako Watanabe for collecting plant materials. Financial support for this study was provided in part by the Salt Science Research Foundation, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norio Tanaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, N., Kuo, J., Omori, Y. et al. Phylogenetic relationships in the genera Zostera and Heterozostera (Zosteraceae) based on matK sequence data. J Plant Res 116, 273–279 (2003). https://doi.org/10.1007/s10265-003-0090-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-003-0090-x

Keywords