Skip to main content

Advertisement

Log in

Le cellule mesenchimali

Mesenchimal stem cells

  • Scienza di Base
  • Published:
Archivio di Ortopedia e Reumatologia

Abstract

Mesenchymal stem cells (MSCs) are multipotent: that they can differentiate into various cell types, including condrocytes, osteoblasts and adipocytes. Their actions include not only material substitution of damaged cells, but also an antinflammatory and immunomodulatory activity. Today the most frequently employed MSCs are derived from bone marrow. Their clinical applications are various, mostly in the orthopaedic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Bibliografia

  1. Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16:381–390

    CAS  PubMed  Google Scholar 

  2. Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  3. Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74

    Article  CAS  PubMed  Google Scholar 

  4. De Girolamo L, Sartori MF, Arrigoni E et al (2008) Human adipose-derived stem cells as future tools in tissue regeneration: osteogenic differentiation and cell-scaffold interaction. Int J Artif Organs 31:467–479

    PubMed  Google Scholar 

  5. De Girolamo L, Sartori MF, Albisetti W, Brini AT (2007) Osteogenic differentiation of human adipose-derived stem cells: comparison of two different inductive media. J Tissue Eng Regen Med 1:154–157

    Article  PubMed  CAS  Google Scholar 

  6. Mimeault M, Batra SK (2008) Recent progress on tissue-resident adult stem cell biology and their therapeutic implications. Stem Cell Rev 4:27–49

    Article  PubMed  Google Scholar 

  7. Bianco P, Robey PG, Simmons PJ (2008) Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2:313–319

    Article  CAS  PubMed  Google Scholar 

  8. Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  9. Sakaguchi Y, Sekiya I, Yagishita K, Muneta T (2005) Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum 52:2521–2529

    Article  PubMed  Google Scholar 

  10. Sotiropoulou PA, Perez SA, Salagianni M et al (2006) Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells. Stem Cells 24:462–471

    Article  PubMed  Google Scholar 

  11. Murphy JM, Dixon K, Beck S et al (2002) Reduced chondrogenic and adipogenic activity of mesenchymal stem cells from patients with advanced osteoarthritis. Arthritis Rheum 46:704–713

    Article  PubMed  Google Scholar 

  12. Kastrinaki MC, Sidiropoulos P, Roche S et al (2008) Functional, molecular and proteomic characterisation of bone marrow mesenchymal stem cells in rheumatoid arthritis. Ann Rheum Dis 67:741–749

    Article  CAS  PubMed  Google Scholar 

  13. Dudics V, Kunstár A, Kovács J et al (2008) Chondrogenic potential of mesenchymal stem cells from patients with rheumatoid arthritis and osteoarthritis: measurements in a microculture system. Cells Tissues Organs 2009; 189:307–316

    Google Scholar 

  14. Tuan RS (2004) Biology of developmental and regenerative skeletogenesis. Clin Orthop 427[Suppl.]:105–117

    Google Scholar 

  15. Tsuchiya H, Kitoh H, Sugiura F, Ishiguro N (2003) Chondrogenesis enhanced by overexpression of sox9 gene in mouse bone marrow-derived mesenchymal stem cells. Biochem Biophys Res Commun 301:338–343

    Article  CAS  PubMed  Google Scholar 

  16. Barry F, Boynton RE, Liu B, Murphy JM (2001) Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp Cell Res 268:189–200

    Article  CAS  PubMed  Google Scholar 

  17. Sekiya I, Larson BL, Vuoristo JT et al (2005) Comparison of effect of BMP-2, -4, and -6 on in vitro cartilage formation of human adult stem cells from bone marrow stroma. Cell Tissue Res 320:269–276

    Article  CAS  PubMed  Google Scholar 

  18. Hennig T, Lorenz H, Thiel A et al (2007) Reduced chondrogenic potential of adipose tissue derived stromal cells correlates with an altered TGFbeta receptor and BMP profile and is overcome by BMP-6. J Cell Physiol 211:682–691

    Article  CAS  PubMed  Google Scholar 

  19. Rousche KT, Basksh D, Tuan RS (2007) Wnt signaling for targeted therapies in rheumatology. In: Smolen JS, Lipsky PE (Eds.) Further targeted therapies in rheumatology. Taylor & Francis, London

    Google Scholar 

  20. Sen M (2005) Wnt signalling in rheumatoid arthritis. Rheumatology (Oxford) 44:708–713

    Article  CAS  Google Scholar 

  21. Zhou S, Eid K, Glowacki J (2004) Cooperation between TFG-beta and Wnt pathways during chondrocyte and adipocyte differentiation of human marrow stromal cells. J Bone Miner Res 19:463–470

    Article  CAS  PubMed  Google Scholar 

  22. Tuli R, Tuli S, Nandi S et al (2003) Transforming growth factor-beta-mediated chondrogenesis of human mesenchymal progenitor cells involves N-cadherin and mitogen-activated protein kinase and Wnt signaling cross-talk. J Biol Chem 278:41227–41236

    Article  CAS  PubMed  Google Scholar 

  23. Baksh D, Tuan RS (2007) Canonical and non-canonical Wnts differentially affect the development potential of primary isolate of human bone marrow mesenchymal stem cells. J Cell Physiol 212:817–826

    Article  CAS  PubMed  Google Scholar 

  24. Mauck RL, Yuan X, Tuan RS (2006) Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture. Osteoarthritis Cartilage 14:179–189

    Article  CAS  PubMed  Google Scholar 

  25. Le Blanc K, Tammik C, Rosendahl K et al (2003) HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 31:890–896

    Article  PubMed  CAS  Google Scholar 

  26. Tse WT, Pendleton JD, Beyer WM et al (2003) Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 75:389–397

    Article  CAS  PubMed  Google Scholar 

  27. Prigozhina TB, Khitrin S, Elkin G et al (2008) Mesenchymal stromal cells lose their immunosuppressive potential after allotransplantation. Exp Hematol 36:1370–1376

    Article  CAS  PubMed  Google Scholar 

  28. Eliopoulos N, Stagg J, Lejeune L et al (2005) Allogeneic marrow stromal cells are immune rejected by MHC class I- and class II-mismatched recipient mice. Blood 106:4057–4065

    Article  CAS  PubMed  Google Scholar 

  29. Spaggiari GM, Capobianco A, Abdelrazik H et al (2008) Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 111:1327–1333

    Article  CAS  PubMed  Google Scholar 

  30. Sotiropoulou PA, Perez SA, Gritzapis AD et al (2006) Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells 24:74–85

    Article  PubMed  Google Scholar 

  31. Beyth S, Borovsky Z, Mevorach D et al (2005) Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood 105:2214–2219

    Article  CAS  PubMed  Google Scholar 

  32. Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822

    Article  CAS  PubMed  Google Scholar 

  33. Ramasamy R, Fazekasova H, Lam EW et al (2007) Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. Transplantation 83:71–76

    Article  PubMed  Google Scholar 

  34. Jiang XX, Zhang Y, Liu B et al (2005) Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 105:4120–4126

    Article  CAS  PubMed  Google Scholar 

  35. Abdallah BM, Jensen CH, Gutierrez G et al (2004) Regulation of human skeletal stem cells differentiation by Dlk1/Pref-1. J Bone Miner Res 19:841–852

    Article  CAS  PubMed  Google Scholar 

  36. Allay JA, Dennis JE, Haynesworth SE et al (1997) LacZ and interleukin-3 expression in vivo after retroviral transduction of marrow-derived human osteogenic mesenchymal progenitors. Hum Gene Ther 8:1417–1427

    Article  CAS  PubMed  Google Scholar 

  37. Assmus B, Schächinger V, Teupe C et al (2002) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOP-CARE-AMI). Circulation 106:3009–3017

    Article  PubMed  Google Scholar 

  38. Badiavas EV, Falanga V (2003) Treatment of chronic wounds with bone marrow-derived cells. Arch Dermatol 139:510–516

    Article  PubMed  Google Scholar 

  39. Bianco P, Robey PG (2001) Stem cells in tissue engineering. Nature 414:118–121

    Article  CAS  PubMed  Google Scholar 

  40. Bruder SP, Fink DJ, Caplan AI (1994) Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J Cell Biochem 56:283–294

    Article  CAS  PubMed  Google Scholar 

  41. De Bari C, Dell’Accio F, Tylzanowski P, Luyten FP (2001) Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 44:1928–1942

    Article  PubMed  Google Scholar 

  42. Diduch DR, Jordan LC, Mierisch CM, Balian G (2000) Marrow stromal cells embedded in alginate for repair of osteochondral defects. Arthroscopy 16:571–577

    Article  CAS  PubMed  Google Scholar 

  43. Fouillard L, Bensidhoum M, Bories D et al (2003) Engraftment of allogeneic mesenchymal stem cells in the bone marrow of a patient with severe idiopathic aplastic anemia improves stroma. Leukemia 17:474–476

    Article  CAS  PubMed  Google Scholar 

  44. Friedenstein AJ (1990) Osteogenic stem cells in the bone marrow. In: Heersche JN, Kanis JA (Eds.) Bone and mineral research. Elsevier Science Publishers, The Netherlands:243–272

    Google Scholar 

  45. Gao J, Dennis JE, Muzic RF et al (2001) The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs 169:12–20

    Article  CAS  PubMed  Google Scholar 

  46. Horwitz EM, Gordon PL, Koo WK et al (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci USA 99:8932–8937

    Article  CAS  PubMed  Google Scholar 

  47. Jiang Y, Jahagirdar BN, Reinhardt RL et al (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49

    Article  CAS  PubMed  Google Scholar 

  48. J ohnstone B, Hering TM, Caplan AI et al (1998) In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 238:265–272

    Article  CAS  Google Scholar 

  49. Krebsbach PH, Kuznetsov SA, Satomura K et al (1997) Bone formation in vivo: comparison of osteogenesis by transplanted mouse and human marrow stromal fibroblasts. Transplantation 63:1059–1069

    Article  CAS  PubMed  Google Scholar 

  50. Kuznetsov SA, Mankani MH, Gronthos S et al (2001) Circulating skeletal stem cells. J Cell Biol 153:1133–1140

    Article  CAS  PubMed  Google Scholar 

  51. Hunziker EB (2002) Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage 10:432–463

    Article  CAS  PubMed  Google Scholar 

  52. Horie M, Sekiya I, Muneta T et al (2009) Intra-articular injected synovial stem cells differentiate into meniscal cells directly and promote meniscal regeneration without mobilization to distant organs in rat massive meniscal defect. Stem cells 27:878–887

    Article  CAS  PubMed  Google Scholar 

  53. Justesen J, Stenderup K, Eriksen EF, Kassem M (2002) Maintenance of osteoblastic and adipocytic differentiation potential with age and osteoporosis in human marrow stromal cell cultures. Calcif Tissue Int 71:36–44

    Article  CAS  PubMed  Google Scholar 

  54. Kassem M, Ankersen L, Eriksen EF et al (1997) Demonstration of cellular aging and senescence in serially passaged long-term cultures of human trabecular osteoblasts. Osteoporos Int 7:514–524

    Article  CAS  PubMed  Google Scholar 

  55. Kassem M, Mosekilde L, Eriksen EF (1993) 1,25-dihydroxyvitamin D3 potentiates fluoride-stimulated collagen type I production in cultures of human bone marrow stromal osteoblast-like cells. J Bone Miner Res 8:1453–1458

    Article  CAS  PubMed  Google Scholar 

  56. Koc ON, Day J, Nieder M et al (2002) Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transplant 30:215–222

    Article  CAS  PubMed  Google Scholar 

  57. Koc ON, Gerson SL, Cooper BW et al (2000) Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol 18:307–316

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Albisetti, W., Pedretti, L., Meda, M. et al. Le cellule mesenchimali. Arch Ortop Reumatol 120, 15–17 (2009). https://doi.org/10.1007/s10261-009-0043-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10261-009-0043-6

Navigation