Alhamzawi R, Ali HTM (2018) Bayesian quantile regression for ordinal longitudinal data. J Appl Stat 45(5):815–828
MathSciNet
Article
Google Scholar
Barndorff-Nielsen OE, Shephard N (2001) Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial economics. J R Stat Soc Ser B (Stat Methodol) 63(2):167–241
MathSciNet
Article
Google Scholar
Chernozhukov V, Fernandez-Val I, Melly B, Wüthrich K (2019) Generic inference on quantile and quantile effect functions for discrete outcomes. J Am Stat Assoc 1–24
Davino C, Furno M, Vistocco D (2013) Quantile regression: theory and applications. John Wiley and Sons, Hoboken
MATH
Google Scholar
Davison AC, Hinkley DV (1997) Bootstrap methods and their applications. Cambridge University Press, Cambridge
Book
Google Scholar
de Leon AR, Wu B (2011) Copula-based regression models for a bivariate mixed discrete and continuous outcome. Stat Med 30(2):175–185
MathSciNet
Article
Google Scholar
Denuit M, Dhaene J, Goovaerts M, Kaas R (2006) Actuarial theory for dependent risks: measures, orders and models. John Wiley & Sons, West Sussex
Google Scholar
Farcomeni A, Viviani S (2015) Longitudinal quantile regression in the presence of informative dropout through longitudinal-survival joint modeling. Stat Med 34(7):1199–1213
MathSciNet
Article
Google Scholar
Fitzmaurice G, Davidian M, Verbeke G, Molenberghs G (2008) Longitudinal data analysis. CRC Press, Boston
Book
Google Scholar
Frumento P, Salvati N (2021) Parametric modeling of quantile regression coefficient functions with count data. Stat Methods Appl 1–22
Geraci M, Farcomeni A (2019) Mid-quantile regression for discrete responses. Stat Methods Med Res. arXiv:1907.01945
Ghasemzadeh S, Ganjali M, Baghfalaki T (2018a) Bayesian quantile regression for analyzing ordinal longitudinal responses in the presence of non-ignorable missingness. METRON 76(3):321–348
MathSciNet
Article
Google Scholar
Ghasemzadeh S, Ganjali M, Baghfalaki T (2018b) A Bayesian conditional model for bivariate mixed ordinal and skew continuous longitudinal responses using quantile regression. J Appl Stat 45(14):2619–2642
MathSciNet
Article
Google Scholar
Ghasemzadeh S, Ganjali M, Baghfalaki T (2020) Bayesian quantile regression for joint modeling of longitudinal mixed ordinal and continuous data. Commun Stat Simul Comput 49(2):375–395
MathSciNet
Article
Google Scholar
Hao L, Naiman DQ (2007) Quantile regression. Sage, New York
Book
Google Scholar
Held L, Bové DS (2014) Applied statistical inference. Springer, Berlin
Book
Google Scholar
Jeliazkov I, Graves J, Kutzbach M (2008) Fitting and comparison of models for multivariate ordinal outcomes. Adv Econ Bayesian Econ 23:115–156
MATH
Google Scholar
Jiryaie F, Withanage N, Wu B, De Leon AR (2016) Gaussian copula distributions for mixed data, with application in discrimination. J Stat Comput Simul 86(9):1643–1659
MathSciNet
Article
Google Scholar
Karlis D (2002) An EM type algorithm for maximum likelihood estimation of the normal-inverse Gaussian distribution. Stat Probab Lett 57(1):43–52
MathSciNet
Article
Google Scholar
Koenker R (2005) Quantile regression. Cambridge University Press, Cambridge
Book
Google Scholar
Koenker R, Bassett G (1978) Regression quantiles. Econometrica 46:33–50
MathSciNet
Article
Google Scholar
Kozumi H, Kobayashi G (2011) Gibbs sampling methods for Bayesian quantile regression. J Stat Comput Simul 81(11):1565–1578
MathSciNet
Article
Google Scholar
Krämer N, Brechmann EC, Silvestrini D, Czado C (2013) Total loss estimation using copula-based regression models. Insur Math Econ 53(3):829–839
MathSciNet
Article
Google Scholar
Luo Y, Lian H, Tian M (2012) Bayesian quantile regression for longitudinal data models. J Stat Comput Simul 82(11):1635–1649
MathSciNet
Article
Google Scholar
Machado JAF, Silva JS (2005) Quantiles for counts. J Am Stat Assoc 100(472):1226–1237
MathSciNet
Article
Google Scholar
McLachlan G, Krishnan T (2007) The EM algorithm and extensions. John Wiley & Sons, New York
MATH
Google Scholar
Nelsen RB (2007) An introduction to copulas. Springer, New York
MATH
Google Scholar
Petrella L, Raponi V (2019) Joint estimation of conditional quantiles in multivariate linear regression models with an application to financial distress. J Multivar Anal 173:70–84
MathSciNet
Article
Google Scholar
Rahman MA (2016) Bayesian quantile regression for ordinal models. Bayesian Anal 11(1):1–24
MathSciNet
Article
Google Scholar
Sklar A (1959) Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut Statitstique de l’Université de Paris 8:229–231
MATH
Google Scholar
Song PXK, Li M, Yuan Y (2009) Joint regression analysis of correlated data using Gaussian copulas. Biometrics 65(1):60–68
MathSciNet
Article
Google Scholar
Yu K, Moyeed RA (2001) Bayesian quantile regression. Stat Probab Lett 54(4):437–447
MathSciNet
Article
Google Scholar
Yu K, Zhang J (2005) A three-parameter asymmetric Laplace distribution and its extension. Communications in Statistics-Theory and Methods 34(9–10):1867–1879
MathSciNet
Article
Google Scholar
Yu K, Lu Z, Stander J (2003) Quantile regression: applications and current research areas. J R Stat Soc Ser D (The Statistician) 52(3):331–350
MathSciNet
Article
Google Scholar
Zhou YH, Ni ZX, Li Y (2014) Quantile regression via the EM algorithm. Commun Stat Simul Comput 43(10):2162–2172
MathSciNet
Article
Google Scholar