Skip to main content

Quantile regression via the EM algorithm for joint modeling of mixed discrete and continuous data based on Gaussian copula

Abstract

In this paper, we develop a joint quantile regression model for correlated mixed discrete and continuous data using Gaussian copula. Our approach entails specifying marginal quantile regression models for the responses, and combining them via a copula to form a joint model. For modeling the quantiles of continuous response an asymmetric Laplace (AL) distribution is assigned to the error terms in both continuous and discrete models. For modeling the discrete response an underlying latent variable model and the threshold concept are used. Quantile regression for discrete responses can be fitted using monotone equivariance property of quantiles. By assuming a latent variable framework to describe discrete responses, the applied proposed copula still uniquely determines the joint distribution. The likelihood function of the joint model have also a tractable form but it is not differentiable in some points of the parameter space. However, by using the stochastic representation of AL distribution, the maximum likelihood estimate of parameters are obtained using an EM algorithm and also in order to carry out inference about parameters Bootstrap confidence intervals are specified using a Monte Carlo technique. Some simulation studies are performed to illustrate the performance of the model. Finally, we illustrate applications of the proposed approach using burn injuries data.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Alhamzawi R, Ali HTM (2018) Bayesian quantile regression for ordinal longitudinal data. J Appl Stat 45(5):815–828

    MathSciNet  Article  Google Scholar 

  • Barndorff-Nielsen OE, Shephard N (2001) Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial economics. J R Stat Soc Ser B (Stat Methodol) 63(2):167–241

    MathSciNet  Article  Google Scholar 

  • Chernozhukov V, Fernandez-Val I, Melly B, Wüthrich K (2019) Generic inference on quantile and quantile effect functions for discrete outcomes. J Am Stat Assoc 1–24

  • Davino C, Furno M, Vistocco D (2013) Quantile regression: theory and applications. John Wiley and Sons, Hoboken

    MATH  Google Scholar 

  • Davison AC, Hinkley DV (1997) Bootstrap methods and their applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • de Leon AR, Wu B (2011) Copula-based regression models for a bivariate mixed discrete and continuous outcome. Stat Med 30(2):175–185

    MathSciNet  Article  Google Scholar 

  • Denuit M, Dhaene J, Goovaerts M, Kaas R (2006) Actuarial theory for dependent risks: measures, orders and models. John Wiley & Sons, West Sussex

    Google Scholar 

  • Farcomeni A, Viviani S (2015) Longitudinal quantile regression in the presence of informative dropout through longitudinal-survival joint modeling. Stat Med 34(7):1199–1213

    MathSciNet  Article  Google Scholar 

  • Fitzmaurice G, Davidian M, Verbeke G, Molenberghs G (2008) Longitudinal data analysis. CRC Press, Boston

    Book  Google Scholar 

  • Frumento P, Salvati N (2021) Parametric modeling of quantile regression coefficient functions with count data. Stat Methods Appl 1–22

  • Geraci M, Farcomeni A (2019) Mid-quantile regression for discrete responses. Stat Methods Med Res. arXiv:1907.01945

  • Ghasemzadeh S, Ganjali M, Baghfalaki T (2018a) Bayesian quantile regression for analyzing ordinal longitudinal responses in the presence of non-ignorable missingness. METRON 76(3):321–348

    MathSciNet  Article  Google Scholar 

  • Ghasemzadeh S, Ganjali M, Baghfalaki T (2018b) A Bayesian conditional model for bivariate mixed ordinal and skew continuous longitudinal responses using quantile regression. J Appl Stat 45(14):2619–2642

    MathSciNet  Article  Google Scholar 

  • Ghasemzadeh S, Ganjali M, Baghfalaki T (2020) Bayesian quantile regression for joint modeling of longitudinal mixed ordinal and continuous data. Commun Stat Simul Comput 49(2):375–395

    MathSciNet  Article  Google Scholar 

  • Hao L, Naiman DQ (2007) Quantile regression. Sage, New York

    Book  Google Scholar 

  • Held L, Bové DS (2014) Applied statistical inference. Springer, Berlin

    Book  Google Scholar 

  • Jeliazkov I, Graves J, Kutzbach M (2008) Fitting and comparison of models for multivariate ordinal outcomes. Adv Econ Bayesian Econ 23:115–156

    MATH  Google Scholar 

  • Jiryaie F, Withanage N, Wu B, De Leon AR (2016) Gaussian copula distributions for mixed data, with application in discrimination. J Stat Comput Simul 86(9):1643–1659

    MathSciNet  Article  Google Scholar 

  • Karlis D (2002) An EM type algorithm for maximum likelihood estimation of the normal-inverse Gaussian distribution. Stat Probab Lett 57(1):43–52

    MathSciNet  Article  Google Scholar 

  • Koenker R (2005) Quantile regression. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Koenker R, Bassett G (1978) Regression quantiles. Econometrica 46:33–50

    MathSciNet  Article  Google Scholar 

  • Kozumi H, Kobayashi G (2011) Gibbs sampling methods for Bayesian quantile regression. J Stat Comput Simul 81(11):1565–1578

    MathSciNet  Article  Google Scholar 

  • Krämer N, Brechmann EC, Silvestrini D, Czado C (2013) Total loss estimation using copula-based regression models. Insur Math Econ 53(3):829–839

    MathSciNet  Article  Google Scholar 

  • Luo Y, Lian H, Tian M (2012) Bayesian quantile regression for longitudinal data models. J Stat Comput Simul 82(11):1635–1649

    MathSciNet  Article  Google Scholar 

  • Machado JAF, Silva JS (2005) Quantiles for counts. J Am Stat Assoc 100(472):1226–1237

    MathSciNet  Article  Google Scholar 

  • McLachlan G, Krishnan T (2007) The EM algorithm and extensions. John Wiley & Sons, New York

    MATH  Google Scholar 

  • Nelsen RB (2007) An introduction to copulas. Springer, New York

    MATH  Google Scholar 

  • Petrella L, Raponi V (2019) Joint estimation of conditional quantiles in multivariate linear regression models with an application to financial distress. J Multivar Anal 173:70–84

    MathSciNet  Article  Google Scholar 

  • Rahman MA (2016) Bayesian quantile regression for ordinal models. Bayesian Anal 11(1):1–24

    MathSciNet  Article  Google Scholar 

  • Sklar A (1959) Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut Statitstique de l’Université de Paris 8:229–231

    MATH  Google Scholar 

  • Song PXK, Li M, Yuan Y (2009) Joint regression analysis of correlated data using Gaussian copulas. Biometrics 65(1):60–68

    MathSciNet  Article  Google Scholar 

  • Yu K, Moyeed RA (2001) Bayesian quantile regression. Stat Probab Lett 54(4):437–447

    MathSciNet  Article  Google Scholar 

  • Yu K, Zhang J (2005) A three-parameter asymmetric Laplace distribution and its extension. Communications in Statistics-Theory and Methods 34(9–10):1867–1879

    MathSciNet  Article  Google Scholar 

  • Yu K, Lu Z, Stander J (2003) Quantile regression: applications and current research areas. J R Stat Soc Ser D (The Statistician) 52(3):331–350

    MathSciNet  Article  Google Scholar 

  • Zhou YH, Ni ZX, Li Y (2014) Quantile regression via the EM algorithm. Commun Stat Simul Comput 43(10):2162–2172

    MathSciNet  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ganjali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghasemzadeh, S., Ganjali, M. & Baghfalaki, T. Quantile regression via the EM algorithm for joint modeling of mixed discrete and continuous data based on Gaussian copula. Stat Methods Appl (2022). https://doi.org/10.1007/s10260-022-00629-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10260-022-00629-2

Keywords

  • Asymmetric Laplace distribution
  • Quantile regression
  • Monotone equivariance property
  • Gaussian copula
  • Bootstrap
  • The EM algorithm