Distributions of powers of the central beta matrix variates and applications


We consider the central Beta matrix variates of both kinds, and establish the expressions of the densities of integral powers of these variates, for all their three types of distributions encountered in the statistical literature: entries, determinant, and latent roots distributions. Applications and computation of credible intervals are presented.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Bekker A, Roux JJ, Pham-Gia T (2009) The type I distribution of the ratio of independent “Weibullized” generalized beta-prime variables. Stat Pap 50(2):323–338

    MathSciNet  Article  Google Scholar 

  2. Gupta AK, Nagar DK (2000) Matrix variate distributions. Chapman and Hall/CRC, New York

    MATH  Google Scholar 

  3. Lawley D (1938) A generalization of Fisher’s \(z\) test. Biometrika 30(1/2):180–187

    Article  Google Scholar 

  4. Mathai AM (1984) Extensions of Wilks’ integral equations and distributions of test statistics. Ann Inst Stat Math 36(2):271–288

    MathSciNet  Article  Google Scholar 

  5. Mathai AM (1997) Jacobians of matrix transformations and functions of matrix arguments. World Scientific Publishing Company, Singapore

    Book  Google Scholar 

  6. Mathai AM, Saxena R, Haubold H (2010) The \(H\)-function: theory and applications. Springer, New York

    MATH  Google Scholar 

  7. McDonald JB, Xu YJ (1995) A generalization of the beta distribution with applications. J Econom 66(1–2):133–152

    Article  Google Scholar 

  8. Muirhead RJ (1982) Aspects of multivariate statistical theory. Wiley, New York

    Book  Google Scholar 

  9. Nadarajah S, Kotz S (2004) A generalized beta distribution. Math Sci 29:36–41

    MathSciNet  MATH  Google Scholar 

  10. Pauw J, Bekker A, Roux JJ (2010) Densities of composite Weibullized generalized gamma variables: theory and methods. South Afr Stat J 44(1):17–42

    MATH  Google Scholar 

  11. Pham-Gia T (2008) Exact distribution of the generalized Wilks’s statistic and applications. J Multivar Anal 99(8):1698–1716

    MathSciNet  Article  Google Scholar 

  12. Pham-Gia T, Thanh DN (2016) Hypergeometric functions: From one scalar variable to several matrix arguments, in statistics and beyond. Open J Stat 6(5):951–994

    Article  Google Scholar 

  13. Pham-Gia T, Turkkan N (2011a) Distributions of ratios: from random variables to random matrices. Open J Stat 1(2):93–104

    MathSciNet  Article  Google Scholar 

  14. Pham-Gia T, Turkkan N (2011b) Testing the equality of several covariance matrices. J Stat Comput Simul 81(10):1233–1246

    MathSciNet  Article  Google Scholar 

  15. Pillai K (1954) On some distribution problems in multivariate analysis. Tech. Rep., North Carolina State University. Dept. of Statistics

  16. Pillai K (1955) Some new test criteria in multivariate analysis. Ann Math Stat 26(1):117–121

    MathSciNet  Article  Google Scholar 

  17. Rencher A, Christensen W (2012) Methods of multivariate analysis, 3rd edn. Wiley, New York

    Book  Google Scholar 

  18. Roy SN (1953) On a heuristic method of test construction and its use in multivariate analysis. Ann Math Stat 24(2):220–238

    MathSciNet  Article  Google Scholar 

  19. Turkkan N, Pham-Gia T (1993) Computation of the highest posterior density interval in Bayesian analysis. J Stat Comput Simul 44(3–4):243–250

    Article  Google Scholar 

  20. Turkkan N, Pham-Gia T (1997) Algorithm as 308: highest posterior density credible region and minimum area confidence region: the bivariate case. J R Stat Soc Ser C (Appl Stat) 46(1):131–140

    Article  Google Scholar 

  21. Wilks S (1932) Certain generalizations in the analysis of variance. Biometrika 24(3/4):471–494

    Article  Google Scholar 

  22. Wishart J (1928) The generalised product moment distribution in samples from a normal multivariate population. Biometrika 20(1/2):32–52

    Article  Google Scholar 

Download references


The authors wish to thank two anonymous referees for their constructive criticisms and suggestions that have helped them to improve the quality of their paper.

Author information



Corresponding author

Correspondence to Thu Pham-Gia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pham-Gia, T., Phong, D.T. & Thanh, D.N. Distributions of powers of the central beta matrix variates and applications. Stat Methods Appl 29, 651–668 (2020). https://doi.org/10.1007/s10260-019-00497-3

Download citation


  • Beta matrix variates
  • Credible interval
  • G-Function
  • Latent roots
  • Powers

Mathematics Subject Classification

  • 62H10