Skip to main content
Log in

Sample selection models for discrete and other non-Gaussian response variables

  • Original Paper
  • Published:
Statistical Methods & Applications Aims and scope Submit manuscript

Abstract

Consider observation of a phenomenon of interest subject to selective sampling due to a censoring mechanism regulated by some other variable. In this context, an extensive literature exists linked to the so-called Heckman selection model. A great deal of this work has been developed under Gaussian assumption of the underlying probability distributions; considerably less work has dealt with other distributions. We examine a general construction which encompasses a variety of distributions and allows various options of the selection mechanism, focusing especially on the case of discrete response. Inferential methods based on the pertaining likelihood function are developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anh H, Powell JL (1993) Semiparametric estimation of censored selection models with a nonparametric selection mechanism. J Econom 58:3–29

    Article  MathSciNet  MATH  Google Scholar 

  • Azzalini A, Capitanio A (2014) The skew-normal and related families. In: IMS monographs series. Cambridge University Press, Cambridge

  • Copas JB, Li HG (1997) Inference for non-random samples (with discussion). J R Stat Soc Ser B 59:55–95

    Article  MATH  Google Scholar 

  • Greene W (1998) Sample selection in credit-scoring models. Jpn World Econ 10:299–316

    Article  Google Scholar 

  • Greene WH (2012) Econometric analysis, 7th edn. Pearson Education Ltd, Harlow

    Google Scholar 

  • Heckman JJ (1976) The common structure of statistical models of truncation, sample selection and limited dependent variables, and a simple estimator for such models. Ann Econ Soc Meas 5:475–492

    Google Scholar 

  • Heckman JJ (1979) Sample selection bias as a specification error. Econometrica 47:153–161

    Article  MathSciNet  MATH  Google Scholar 

  • Marchenko YV, Genton MG (2012) A Heckman selection-\(t\) model. J Am Stat Assoc 107:304–317

    Article  MathSciNet  MATH  Google Scholar 

  • Marra G, Radice R (2017) GJRM: generalised joint regression models with binary/continuous/discrete/survival margins. R package version 0.1-4

  • Marra G, Wyszynski K (2016) Semi-parametric copula sample selection models for count responses. Comput Stat Data Anal 104:110–129

    Article  MathSciNet  MATH  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman & Hall/CRC, London

    Book  MATH  Google Scholar 

  • Newey WK (2009) Two-step estimation of sample selection models. Econom J 12:S217–S229

    Article  MathSciNet  MATH  Google Scholar 

  • Prieger JE (2002) A flexible parametric selection model for non-normal data with application to health care usage. J Appl Econom 17:367–392

    Article  Google Scholar 

  • Riphahn RR, Wambach A, Million A (2003) Incentive effects in the demand for health care: a bivariate panel count data estimation. J Appl Econom 18:387–405

    Article  Google Scholar 

  • Terza JV (1998) Estimating count data models with endogenous switching: sample selection and endogenous treatment effects. J Econom 84:129–154

    Article  MathSciNet  MATH  Google Scholar 

  • Van de Ven WPMM, Van Praag BMS (1981) The demand for deductibles in private health insurance: a probit model with sample selection. J Econom 17(2):229–252 (Corrigendum in 22(3):395, 1983)

    Article  Google Scholar 

  • Wyszynski K, Marra G (2017) Sample selection models for count data in R. Comput Stat. https://doi.org/10.1007/s00180-017-0762-y

    MATH  Google Scholar 

  • Wooldridge J (2010) Econometric analysis of cross section and panel data, 2nd edn. The MIT Press, Cambridge

    MATH  Google Scholar 

  • Zhelonkin M, Genton GG, Ronchetti E (2016) Robust inference in sample selection models. J R Stat Soc Ser B 78:805–827

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to two reviewers for insightful comments leading to appreciable improvement in presentation with respect to an earlier version of the paper. Hyoung-Moon Kim’s research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2015R1D1A1A01059161). Hea-Jung Kim’s research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2015R1D1A1A01057106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyoung-Moon Kim.

Appendix: Score function and Hessian matrix

Appendix: Score function and Hessian matrix

In cases of interest in applications, the density function f is a member of the exponential family which enter the formulation of generalized linear models; hence we focus on this situation. Following essentially the notation of McCullagh and Nelder (1989), we write the baseline density (or probability function, in the discrete case) as

$$\begin{aligned} f(y;\vartheta ,\psi ) = \exp \left\{ \frac{y\vartheta -b(\vartheta )}{a(\psi )} + d(y,\psi )\right\} \end{aligned}$$
(27)

where \(a(\cdot ), b(\cdot )\) and \(d(\cdot )\) are known functions. In some cases, the dispersion parameters \(\psi \) is known; important instances of this type are the Poisson and the binomial distribution.

On inserting expression (27) in (14), the log-likelihood function becomes

$$\begin{aligned} \log L (\alpha , \theta , \psi ) = \sum _{d_i=1} \left[ \frac{y_i\vartheta _i-b(\vartheta _i)}{a_i (\psi )} + d(y_i,\psi ) + \log G_0\{h(y_i)\}\right] + \sum _{d_i=0} \log (1-\pi _i) \end{aligned}$$
(28)

whose derivatives with respect to the parameters \(\beta , \gamma , \psi \) are as follows:

$$\begin{aligned} s(\beta _j) = \displaystyle {\frac{\partial \log L (\alpha , \theta , \psi )}{\partial \beta _j}}= & {} \sum _{d_i=1} \left[ \frac{y_i-\mu _i}{V_i} + \frac{g_0\{h(y_i)\}}{G_0\{h(y_i)\}} \frac{\partial h(y_i)}{\partial \mu _i}\right] \frac{1}{g'(\mu _i)}x_{ij} \\&- \sum _{d_i=0} \left[ \frac{\partial \pi _i/\partial \mu _i}{1-\pi _i} \right] \frac{1}{g'(\mu _i)}x_{ij}, \quad \hbox {for}~j=1, \ldots , p,\\ s(\gamma _h) = \displaystyle {\frac{\partial \log L (\alpha , \theta , \psi )}{\partial \gamma _h}}= & {} \sum _{d_i=1} \left[ \frac{g_0\{h(y_i)\}}{G_0\{h(y_i)\}} \frac{\partial h(y_i)}{\partial \tau _i}\right] w_{ih} \\&- \sum _{d_i=0} \left[ \frac{\partial \pi _i/\partial \tau _i}{1-\pi _i} \right] w_{ih}, \quad \hbox {for}~ h=1, \ldots , q,\\ s(\psi ) = \displaystyle {\frac{\partial \log L (\alpha , \theta , \psi )}{\partial \psi }}= & {} \sum _{d_i=1} \left[ \frac{b(\vartheta _i) - y_i\vartheta _i}{a^2_i(\psi )} a'_i(\psi ) + \frac{\partial d(y_i, \psi )}{\partial \psi } \right] \\&- \sum _{d_i=0} \frac{\partial \pi _i/\partial \psi }{1-\pi _i} \end{aligned}$$

where \(V_i=a_i(\psi )b''(\vartheta _i)= {\text {var}}_{}\!\left\{ \displaystyle {Y_i}\right\} \), \( {\mathbb {E}}_{}\!\left\{ \displaystyle {Y_i}\right\} =\mu _i=b'(\vartheta _i)\), \(g_0=G_0'\) and \(g(\mu _i)=x_i^{\top }\beta \) is called the link function.

The second order derivatives of (28) are given by the following expressions:

$$\begin{aligned} H(\beta _j, \beta _h)= & {} \sum _{d_i=1} \left[ - \frac{1}{a(\psi )} + \left( \frac{g_0'\{h(y_i)\}}{G_0\{h(y_i)\}} - \left( \frac{g_0\{h(y_i)\}}{G_0\{h(y_i)\}} \right) ^2 \right) \left( \frac{\partial h(y_i)}{\partial \mu _i} \right) ^2 b''(\vartheta _i) \right. \\&+ \frac{g_0\{h(y_i)\}}{G_0\{h(y_i)\}} \left( \frac{\partial ^2 h(y_i)}{\partial \mu _i^2} b''(\vartheta _i) +\frac{\partial h(y_i)}{\partial \mu _i} \frac{b'''(\vartheta _i)}{b''(\vartheta _i)} \right) \\&\left. - \left\{ \frac{y_i -b'(\vartheta _i)}{V_i} + \frac{g_0\{h(y_i)\}}{G_0\{h(y_i)\}} \frac{\partial h(y_i)}{\partial \mu _i} \right\} \cdot \left\{ \frac{b'''(\vartheta _i)}{b''(\vartheta _i)} + \frac{b''(\vartheta _i) g''(\mu _i)}{g'(\mu _i)} \right\} \right] \\&\times \frac{x_{ih}x_{ij}}{b''(\vartheta _i)(g'(\mu _i))^2}+ \sum _{d_i=0} \left[ \frac{1}{\pi _i-1} \left( \frac{\partial ^2 \pi _i}{\partial \mu _i^2} b''(\vartheta _i) + \frac{\partial \pi _i}{\partial \mu _i} \frac{b'''(\vartheta _i)}{b''(\vartheta _i)} \right) \right. \\&\left. -\frac{1}{(1-\pi _i)^2} \left( \frac{\partial \pi _i}{\partial \mu _i} \right) ^2 b''(\vartheta _i) \right. \\&\left. + \frac{\partial \pi _i/\partial \mu _i}{1-\pi _i} \cdot \left\{ \frac{b'''(\vartheta _i)}{b''(\vartheta _i)} + \frac{b''(\vartheta _i) g''(\mu _i)}{g'(\mu _i)} \right\} \right] \frac{x_{ih}x_{ij}}{b''(\vartheta _i)(g'(\mu _i))^2},\\ H(\beta _j, \gamma _h)= & {} \sum _{d_i=1} \left[ \left\{ \frac{g_0' \{h(y_i)\}}{G_0 \{h(y_i)\}} -\left( \frac{g_0 \{h(y_i)\}}{G_0\{h(y_i)\}} \right) ^2 \right\} \frac{\partial h(y_i)}{\partial \tau _i} \frac{\partial h(y_i)}{\partial \mu _i} \frac{w_{ih} x_{ij}}{ g'(\mu _i)} \right. \\&- \left. \sum _{d_i=0} \left( \frac{\frac{\partial ^2 \pi _i}{\partial \tau _i \partial \mu _i} }{1-\pi _i} +\frac{\partial \pi _i}{\partial \tau _i} \frac{\partial \pi _i}{\partial \mu _i} \frac{1}{(1-\pi _i)^2} \right) \right] \frac{w_{ih} x_{ij}}{ g'(\mu _i)}, \end{aligned}$$
$$\begin{aligned} H(\beta _j, \psi )= & {} \sum _{d_i=1} \frac{a' (\psi ) (\mu _i - y_i)}{a^2_i (\psi ) b'' (\vartheta _i)}\frac{x_{ij}}{g' (\mu _i)} \\&- \sum _{d_i=0} \frac{1}{(1-\pi _i)^2} \left\{ \frac{\partial ^2 \pi _i}{\partial \psi \partial \mu _i} (1-\pi _i) + \frac{\partial \pi _i}{\partial \psi } \frac{\partial \pi _i}{\partial \mu _i} \right\} \frac{x_{ij}}{g' (\mu _i)},\\ H(\gamma _j, \gamma _h)= & {} \sum _{d_i=1} \left[ \left\{ \frac{g_0' \{h(y_i)\}}{G_0 \{h(y_i)\}} -\left( \frac{g_0 \{h(y_i)\}}{G_0\{h(y_i)\}} \right) ^2 \right\} \left( \frac{\partial h(y_i)}{\partial \tau _i}\right) ^2\right. \\&\left. + \frac{g_0 \{h(y_i)\}}{G_0 \{h(y_i)\}} \frac{\partial ^2 h(y_i)}{\partial \tau _i^2} \right] w_{ij} w_{ih}\\&- \sum _{d_i=0} \frac{1}{(1-\pi _i)^2} \left( \frac{\partial ^2 \pi _i}{\partial \tau _i^2} (1-\pi _i) + \left( \frac{\partial \pi _i}{\partial \tau _i} \right) ^2\right) w_{ij} w_{ih},\\ H(\gamma _j, \psi )= & {} -\sum _{d_i=0} \frac{1}{(1-\pi _i)^2} \left\{ \frac{\partial ^2 \pi _i}{\partial \psi \partial \tau _i} (1-\pi _i) + \frac{\partial \pi _i}{\partial \psi } \frac{\partial \pi _i}{\partial \tau _i} \right\} w_{ij},\\ H(\psi , \psi )= & {} \sum _{d_i=1} \left\{ \frac{2(y_i\vartheta _i -b(\vartheta _i))}{a^3_i(\psi )} (a'_i(\psi ))^2 - \frac{y_i\vartheta _i -b(\vartheta _i)}{a^2_i(\psi )}a''_i(\psi ) + \frac{\partial ^2 d(y_i, \psi )}{\partial \psi ^2}\right\} \\&- \sum _{d_i=0} \frac{1}{(1-\pi _i)^2} \left\{ \frac{\partial ^2 \pi _i}{\partial \psi ^2} (1-\pi _i) + \left( \frac{\partial \pi _i}{\partial \psi } \right) ^2 \right\} . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azzalini, A., Kim, HM. & Kim, HJ. Sample selection models for discrete and other non-Gaussian response variables. Stat Methods Appl 28, 27–56 (2019). https://doi.org/10.1007/s10260-018-0427-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10260-018-0427-1

Keywords

Navigation