Appendix A: Equating of untransformed item parameters
Equation (12) is obtained from Eqs. (7) and (4) as follows:
$$\begin{aligned} \hat{\beta }_{2jk}^* = D \hat{a}_{jk}^* = \frac{D \hat{a}_{jk}}{\hat{A}_k} = \frac{\hat{\beta }_{2jk}}{\hat{A}_k}. \end{aligned}$$
(A1)
Equations (7), (8) and (5) lead to Eq. (13):
$$\begin{aligned} \hat{\beta }_{1jk}^*= & {} - D \hat{a}_{jk}^* \hat{b}_{jk}^* = - D \frac{\hat{a}_{jk}}{\hat{A}_k} \left( \hat{A}_k \, \hat{b}_{jk} + \hat{B}_k\right) = - D \hat{a}_{jk} \hat{b}_{jk} - D \hat{a}_{jk} \frac{\hat{B}_k}{\hat{A}_k}\nonumber \\= & {} \hat{\beta }_{1jk}-\hat{\beta }_{2jk}\frac{\hat{B}_k}{\hat{A}_k}. \end{aligned}$$
(A2)
Appendix B: Covariance matrix of item parameters
The covariance matrix \(\varvec{\varOmega }_j\) entering in Eq. (15) is a block matrix given by
$$\begin{aligned} \varvec{\varOmega }_j = \begin{pmatrix} \mathsf {COV}\left( \varvec{\beta }_{j1}\right) &{}\quad \mathsf {COV}\left( \varvec{\beta }_{j1},\varvec{\beta }_{j2}^*\right) &{}\quad \mathsf {COV}\left( \varvec{\beta }_{j1},\varvec{\beta }_{j3}^*\right) &{}\quad \dots &{}\quad \mathsf {COV}\left( \varvec{\beta }_{j1},\varvec{\beta }_{jK}^*\right) \\ \mathsf {COV}\left( \varvec{\beta }_{j2}^*,\varvec{\beta }_{j1}\right) &{}\quad \mathsf {COV}\left( \varvec{\beta }_{j2}^*\right) &{}\quad \mathsf {COV}\left( \varvec{\beta }_{j2}^*,\varvec{\beta }_{j3}^*\right) &{}\quad \dots &{}\quad \mathsf {COV}\left( \varvec{\beta }_{j2}^*,\varvec{\beta }_{jK}^*\right) \\ \mathsf {COV}\left( \varvec{\beta }_{j3}^*,\varvec{\beta }_{j1}\right) &{}\quad \mathsf {COV}\left( \varvec{\beta }_{j3}^*,\varvec{\beta }_{j2}^*\right) &{}\quad \mathsf {COV}\left( \varvec{\beta }_{j3}^*\right) &{}\quad \dots &{}\quad \mathsf {COV}\left( \varvec{\beta }_{j3}^*,\varvec{\beta }_{jK}^*\right) \\ \vdots &{}\quad \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots \\ \mathsf {COV}\left( \varvec{\beta }_{jK}^*,\varvec{\beta }_{j1}\right) &{}\quad \mathsf {COV}\left( \varvec{\beta }_{jK}^*,\varvec{\beta }_{j2}^*\right) &{}\quad \mathsf {COV}\left( \varvec{\beta }_{jK}^*,\varvec{\beta }_{j3}^*\right) &{}\quad \dots &{}\quad \mathsf {COV}\left( \varvec{\beta }_{jK}^*\right) \end{pmatrix}. \end{aligned}$$
Let \(\varvec{\beta }_{(k)}=(\varvec{\beta }_{1k}^\top , \dots ,\varvec{\beta }_{Jk}^\top )^\top \) denote the item parameters estimates in group k, and \(\varvec{\varOmega }_{(k)} = \mathsf {COV}( \varvec{\beta }_{(k)})\) denote the covariance matrix of the item parameter estimates in group k, which is estimated along with the estimation of the item parameters. Using the delta method, it is possible to compute the covariance matrix \(\varvec{\varOmega } = \mathsf {COV}(\varvec{\beta }_{(1)}^\top ,{\varvec{\beta }_{(2)}^*}^\top , \dots ,{\varvec{\beta }_{(K)}^*}^\top )^\top \), from which to extract \(\varvec{\varOmega }_j\):
$$\begin{aligned} \varvec{\varOmega }&= \frac{\partial \left( \varvec{\beta }_{(1)}^\top , {\varvec{\beta }_{(2)}^*}^\top ,\dots ,{\varvec{\beta }_{(K)}^*}^\top \right) ^\top }{\partial \left( \varvec{\beta }_{(1)}^\top ,\varvec{\beta }_{(2)}^\top , \dots ,\varvec{\beta }_{(K)}^\top \right) }\mathsf {COV}\left( \left( \varvec{\beta }_{(1)}^\top , \varvec{\beta }_{(2)}^\top ,\dots ,\varvec{\beta }_{(K)}^\top \right) ^\top \right) \frac{\partial \left( \varvec{\beta }_{(1)}^\top , {\varvec{\beta }_{(2)}^*}^\top ,\dots ,{\varvec{\beta }_{(K)}^*}^\top \right) }{\partial \left( \varvec{\beta }_{(1)}^\top ,\varvec{\beta }_{(2)}^\top ,\dots , \varvec{\beta }_{(K)}^\top \right) ^\top } \\&= \begin{pmatrix} \frac{\partial \varvec{\beta }_{(1)}}{\partial \varvec{\beta }_{(1)}^\top } &{}\quad \frac{\partial \varvec{\beta }_{(1)}}{\partial \varvec{\beta }_{(2)}^\top } &{}\quad \cdots &{}\quad \frac{\partial \varvec{\beta }_{(1)}}{\partial \varvec{\beta }_{(K)}^\top } \\ \frac{\partial \varvec{\beta }_{(2)}^*}{\partial \varvec{\beta }_{(1)}^\top } &{}\quad \frac{\partial \varvec{\beta }_{(2)}^*}{\partial \varvec{\beta }_{(2)}^\top } &{}\quad \cdots &{}\quad \frac{\partial \varvec{\beta }_{(2)}^*}{\partial \varvec{\beta }_{(K)}^\top } \\ \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots \\ \frac{\partial \varvec{\beta }_{(K)}^*}{\partial \varvec{\beta }_{(1)}^\top } &{}\quad \frac{\partial \varvec{\beta }_{(K)}^*}{\partial \varvec{\beta }_{(2)}^\top } &{}\quad \cdots &{}\quad \frac{\partial \varvec{\beta }_{(K)}^*}{\partial \varvec{\beta }_{(K)}^\top } \\ \end{pmatrix} \begin{pmatrix} \varvec{\varOmega }_{(1)} &{}\quad 0 &{}\quad \cdots &{}\quad 0 \\ 0 &{}\quad \varvec{\varOmega }_{(2)} &{}\quad \cdots &{}\quad 0 \\ \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots \\ 0 &{}\quad 0 &{}\quad \cdots &{}\quad \varvec{\varOmega }_{(K)} \end{pmatrix} \begin{pmatrix} \frac{\partial \varvec{\beta }_{(1)}^\top }{\partial \varvec{\beta }_{(1)}} &{}\quad \frac{\partial {\varvec{\beta }_{(2)}^*}^\top }{\partial \varvec{\beta }_{(1)}} &{}\quad \cdots &{}\quad \frac{\partial {\varvec{\beta }_{(K)}^*}^\top }{\partial \varvec{\beta }_{(1)}} \\ \frac{\partial \varvec{\beta }_{(1)}^\top }{\partial \varvec{\beta }_{(2)}} &{}\quad \frac{\partial {\varvec{\beta }_{(2)}^*}^\top }{\partial \varvec{\beta }_{(2)}} &{}\quad \cdots &{}\quad \frac{\partial {\varvec{\beta }_{(K)}^*}^\top }{\partial \varvec{\beta }_{(2)}} \\ \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots \\ \frac{\partial \varvec{\beta }_{(1)}^\top }{\partial \varvec{\beta }_{(K)}} &{}\quad \frac{\partial {\varvec{\beta }_{(2)}^*}^\top }{\partial \varvec{\beta }_{(K)}} &{}\quad \cdots &{}\quad \frac{\partial {\varvec{\beta }_{(K)}^*}^\top }{\partial \varvec{\beta }_{(K)}} \\ \end{pmatrix}\\&= \begin{pmatrix} \varvec{\varOmega }_{(1)} &{}\quad \varvec{\varOmega }_{(1)} \frac{\partial {\varvec{\beta }_{(2)}^*}^\top }{\partial \varvec{\beta }_{(1)}} &{}\quad \cdots &{}\quad \varvec{\varOmega }_{(1)} \frac{\partial {\varvec{\beta }_{(K)}^*}^\top }{\partial \varvec{\beta }_{(1)}} \\ \frac{\partial \varvec{\beta }_{(2)}^*}{\partial \varvec{\beta }_{(1)}^\top }\varvec{\varOmega }_{(1)} &{}\quad \frac{\partial \varvec{\beta }_{(2)}^*}{\partial \varvec{\beta }_{(1)}^\top }\varvec{\varOmega }_{(1)}\frac{\partial {\varvec{\beta }_{(2)}^*}^\top }{\partial \varvec{\beta }_{(1)}}+ \frac{\partial \varvec{\beta }_{(2)}^*}{\partial \varvec{\beta }_{(2)}^\top } \varvec{\varOmega }_{(2)} \frac{\partial {\varvec{\beta }_{(2)}^*}^\top }{\partial \varvec{\beta }_{(2)}} &{}\quad \cdots &{}\quad \frac{\partial \varvec{\beta }_{(2)}^*}{\partial \varvec{\beta }_{(1)}^\top }\varvec{\varOmega }_{(1)}\frac{\partial {\varvec{\beta }_{(K)}^*}^\top }{\partial \varvec{\beta }_{(1)}} \\ \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots \\ \frac{\partial \varvec{\beta }_{(K)}^*}{\partial \varvec{\beta }_{(1)}^\top }\varvec{\varOmega }_{(1)} &{}\quad \frac{\partial \varvec{\beta }_{(K)}^*}{\partial \varvec{\beta }_{(1)}^\top }\varvec{\varOmega }_{(1)}\frac{\partial {\varvec{\beta }_{(2)}^*}^\top }{\partial \varvec{\beta }_{(1)}} &{}\quad \cdots &{}\quad \frac{\partial \varvec{\beta }_{(K)}^*}{\partial \varvec{\beta }_{(1)}^\top }\varvec{\varOmega }_{(1)}\frac{\partial {\varvec{\beta }_{(K)}^*}^\top }{\partial \varvec{\beta }_{(1)}}+ \frac{\partial \varvec{\beta }_{(K)}^*}{\partial \varvec{\beta }_{(K)}^\top } \varvec{\varOmega }_{(K)} \frac{\partial {\varvec{\beta }_{(K)}^*}^\top }{\partial \varvec{\beta }_{(K)}} \end{pmatrix}, \end{aligned}$$
since \(\frac{\partial \varvec{\beta }_{(1)}}{\partial \varvec{\beta }_{(1)}^\top }\) is the identity matrix, \(\frac{\partial \varvec{\beta }_{(1)}}{\partial \varvec{\beta }_{(k)}^\top }=0\) for all \(k \ne 1\) and \(\frac{\partial \varvec{\beta }_{(k)}^*}{\partial \varvec{\beta }_{(h)}^\top }=0\) for all \(h \ne k\) with \(h\ne 1\). The blocks on the main diagonal of \(\varvec{\varOmega }\) are then
$$\begin{aligned} \mathsf {COV}\left( \varvec{\beta }_{(k)}^*\right) = \frac{\partial \varvec{\beta }_{(k)}^*}{\partial \varvec{\beta }_{(1)}^\top }\varvec{\varOmega }_{(1)}\frac{\partial {\varvec{\beta }_{(k)}^*}^\top }{\partial \varvec{\beta }_{(1)}}+ \frac{\partial \varvec{\beta }_{(k)}^*}{\partial \varvec{\beta }_{(k)}^\top } \varvec{\varOmega }_{(k)} \frac{\partial {\varvec{\beta }_{(k)}^*}^\top }{\partial \varvec{\beta }_{(k)}} , \end{aligned}$$
while the matrices outside the main diagonal are given by
$$\begin{aligned} \mathsf {COV}\left( \varvec{\beta }_{(1)},\varvec{\beta }_{(k)}^*\right) = \varvec{\varOmega }_{(1)}\frac{\partial {\varvec{\beta }_{(k)}^*}^\top }{\partial \varvec{\beta }_{(1)}}, \end{aligned}$$
and
$$\begin{aligned} \mathsf {COV}\left( \varvec{\beta }_{(h)}^*,\varvec{\beta }_{(k)}^*\right) = \frac{\partial \varvec{\beta }_{(h)}^*}{\partial \varvec{\beta }_{(1)}^\top }\varvec{\varOmega }_{(1)} \frac{\partial {\varvec{\beta }_{(k)}^*}^\top }{\partial \varvec{\beta }_{(1)}}. \end{aligned}$$
The chain rule can be exploited to find the derivatives
$$\begin{aligned} \frac{\partial \varvec{\beta }_{(k)}^*}{\partial \left( \varvec{\beta }_{(1)}^\top ,\varvec{\beta }_{(k)}^\top \right) } = \frac{\partial \varvec{\beta }_{(k)}^*}{\partial \left( \varvec{\beta }_{(k)}^\top , \hat{A}_k, \hat{B}_k\right) } \frac{\partial \left( \varvec{\beta }_{(k)}^\top , \hat{A}_k, \hat{B}_k\right) ^\top }{\partial \left( \varvec{\beta }_{(1)}^\top ,\varvec{\beta }_{(k)}^\top \right) }, \end{aligned}$$
(B1)
where
$$\begin{aligned} \frac{\partial \left( \hat{A}_k, \hat{B}_k\right) ^\top }{\partial \left( \varvec{\beta }_{(1)}^\top ,\varvec{\beta }_{(k)}^\top \right) } = \frac{\partial \left( \hat{A}_k, \hat{B}_k\right) ^\top }{\partial \left( \mathbf{v}_{(1)}^\top , \mathbf{v}_{(k)}^\top \right) } \frac{\partial \left( \mathbf{v}_{(1)}^\top , \mathbf{v}_{(k)}^\top \right) ^\top }{\partial \left( \varvec{\beta }_{(1)}^\top ,\varvec{\beta }_{(k)}^\top \right) }, \end{aligned}$$
(B2)
where \(\mathbf{v}_{(k)}=(\mathbf{v}_{1k}^\top ,\dots , \mathbf{v}_{Jk}^\top )^\top \). The non-zero derivatives entering in (B1) and (B2) are given in the following (derivatives of a variable with respect to itself are not shown):
$$\begin{aligned} \frac{\partial \hat{\beta }_{1jk}^*}{\partial \hat{\beta }_{1jk}}= & {} 1, \quad \frac{\partial \hat{\beta }_{1jk}^*}{\partial \hat{\beta }_{2jk}} = -\frac{\hat{B}_k}{\hat{A}_k}, \quad \frac{\partial \hat{\beta }_{1jk}^*}{\partial \hat{A}_k} = \hat{\beta }_{2jk}\frac{\hat{B}_k}{\hat{A}_k^2}, \\ \frac{\partial \hat{\beta }_{1jk}^*}{\partial \hat{B}_k}= & {} - \frac{\hat{\beta }_{2jk}}{\hat{A}_k}, \quad \frac{\partial \hat{\beta }_{2jk}^*}{\partial \hat{\beta }_{2jk}} = \frac{1}{\hat{A}_k}, \quad \frac{\partial \hat{\beta }_{2jk}^*}{\partial \hat{A}_k} = -\frac{\hat{\beta }_{2jk}}{\hat{A}_k^2} \\ \frac{\partial \hat{a}_{jk}}{\partial \hat{\beta }_{2jk}}= & {} \frac{1}{D}, \quad \frac{\partial \hat{b}_{jk}}{\partial \hat{\beta }_{1jk}} = -\frac{1}{\hat{\beta }_{2j1}}, \quad \frac{\partial \hat{b}_{jk}}{\partial \hat{\beta }_{2jk}} = \frac{\hat{\beta }_{1jk}}{\hat{\beta }_{2jk}^2}. \end{aligned}$$
The derivatives \(\frac{\partial ( \hat{A}_k, \hat{B}_k)^\top }{\partial (\mathbf{v}_{(1)}^\top ,\mathbf{v}_{(k)}^\top )}\) are given in Ogasawara (2000, 2001).