Skip to main content
Log in

Spatial–temporal modellization of the \(\hbox {NO}_{2}\) concentration data through geostatistical tools

  • Original Paper
  • Published:
Statistical Methods & Applications Aims and scope Submit manuscript

Abstract

The nitrogen dioxide is a primary pollutant, regarded for the estimation of the air quality index, whose excessive presence may cause significant environmental and health problems. In the current work, we suggest characterizing the evolution of \(\hbox {NO}_{2}\) levels, by using geostatistical approaches that deal with both the space and time coordinates. To develop our proposal, a first exploratory analysis was carried out on daily values of the target variable, daily measured in Portugal from 2004 to 2012, which led to identify three influential covariates (type of site, environment and month of measurement). In a second step, appropriate geostatistical tools were applied to model the trend and the space–time variability, thus enabling us to use the kriging techniques for prediction, without requiring data from a dense monitoring network. This methodology has valuable applications, as it can provide accurate assessment of the nitrogen dioxide concentrations at sites where either data have been lost or there is no monitoring station nearby.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bivand R, Pebesma E, Gómez-Rubio V (2008) Applied spatial data analysis with R. Springer, New York

    MATH  Google Scholar 

  • Bogaert P (1996) Comparison of kriging techniques in a space–time context. Math Geol 28:73–86

    Article  MathSciNet  MATH  Google Scholar 

  • Bruno F, Guttorp P, Sampson P, Cocchi D (2009) A simple non-separable, non-stationary spatiotemporal model for ozone. Environ Ecol Stat 16:515–529

    Article  MathSciNet  Google Scholar 

  • Calculli C, Fasso A, Finazzi F, Pollice A, Turnone A (2015) Maximum likelihood estimation of the multivariate hidden dynamic geostatistical model with application to air quality in Apulia, Italy. Environmetrics 26:406–417

    Article  MathSciNet  Google Scholar 

  • Cameletti M, Ignaccolo R, Bande S (2011) Comparing spatio–temporal models for particulate matter in piemonte. Environmetrics 22:985–996

    Article  MathSciNet  Google Scholar 

  • Carslaw DC (2005) Evidence of an increasing no2/nox emissions ratio from road traffic emissions. Atmos Environ 39:4793–4802

    Article  Google Scholar 

  • Cressie N (1990) The origins of kriging. Math Geol 22:239–252

    Article  MathSciNet  MATH  Google Scholar 

  • Cressie N, Huang H (1999) Classes of nonseparable, spatio–temporal stationary covariance functions. J Am Stat Assoc 94:1330–1340

    Article  MathSciNet  MATH  Google Scholar 

  • Cressie N, Wikle C (2011) Statistics for spatio–temporal data. Wiley, New York

    MATH  Google Scholar 

  • De Cesare L, Myers D, Posa D (2001) Estimating and modeling space–time correlation structures. Stat Probab Lett 51:9–14

    Article  MATH  Google Scholar 

  • De Gruijter J, Brus D, Bierkens M, Knotters M (2006) Sampling for natural resource monitoring. Springer, Germany

    Book  Google Scholar 

  • De Iaco S, Posa D (2012) Predicting spatio–temporal random fields: some computational aspects. Comput Geosci 41:12–24

    Article  Google Scholar 

  • Dimitrakopoulos R, Luo X (1994) Spatiotemporal modeling: covariances and ordinary kriging systems. In: Dimitrakopoulos R (ed) Geostatistics for the next century. Kluwer Academic Publishers, Dordrecht, pp 88–93

    Chapter  Google Scholar 

  • Dimitrakopoulos R, Luo X (1997) Spatiotemporal modeling: covariances and ordinary kriging systems. In: Baafi E, Scofield N (eds) Geostatistics Wollongong’96. Kluwer Academic Publishers, Dordrecht, pp 138–149

    Google Scholar 

  • Fernández-Casal R, González-Manteiga W, Febrero-Bande M (2003) Flexible spatio–temporal stationary variogram models. Stat Comput 13:127–136

    Article  MathSciNet  Google Scholar 

  • Fox J (2008) Applied regression analysis and generalized linear models. SAGE Publications, Thousand Oaks

    Google Scholar 

  • Gneiting T, Genton MG, Guttorp P (2007) Statistical methods for spatio–temporal systems. Chapman and Hall, Cambridge

    Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York

    Google Scholar 

  • Grice S, Stedman J, Kent A, Hobson M, Norris J, Abbott J, Cooke S (2009) Recent trends and projections of primary no2 emissions in europe. Atmos Environ 43:2154–2167

    Article  Google Scholar 

  • Heuvelink G, Griffith D (2010) Space-time geostatistics for geography: a case study of radiation monitoring across parts of Germany. Geogr Anal 42:161–179

    Article  Google Scholar 

  • Host G, Omre H, Switzer P (1995) Spatial interpolation errors for monitoring data. J Am Stat Assoc 90:853–861

    MathSciNet  Google Scholar 

  • Isaaks E, Srivastava R (1989) An introduction to applied geostatistics. Oxford University Press, New York

    Google Scholar 

  • Kyriakidis P, Journel A (1999) Geostatistical space–time models: a review. Math Geol 31:651–684

    Article  MathSciNet  MATH  Google Scholar 

  • Lewne M, Cyrys J, Meliefste K, Hoek G, Brauer M, Fischer P, Gehring U, Heinrich J, Brunekreef B, Bellander T (2004) Spatial variation in nitrogen dioxide in three European areas. Sci Total Environ 332:217–230

    Article  Google Scholar 

  • Lindley S, Walsh T (2005) Inter-comparison of interpolated background nitrogen dioxide concentrations across greater manchester, uk. Atmos Environ 39:2709–2724

    Article  Google Scholar 

  • Myers D (2004) Estimating and modeling space-time variograms. In: McRoberts R (ed) Proceedings of the joint meeting of TIES-2004 and ACCURACY-2004

  • Porcu E, Mateu J, Saura F (2008) New classes of covariance and spectral density functions for spatio–temporal modelling. Stoch Environ Res Risk Assess 22:65–79

    Article  MathSciNet  MATH  Google Scholar 

  • R Team D (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing

  • Rodriguez-Iturbe I, Mejía J (1974) The design of rainfall networks in time and space. Water Resour Res 10:713–728

    Article  Google Scholar 

  • Rouhani S, Hall T (1989) Space–time kriging of groundwater data. In: Armstrong M (ed) Geostatistics. Kluwer Academic Publishers, Dordrecht, pp 639–651

    Chapter  Google Scholar 

  • Saiz-Lopez A, Adame J, Notario A, Poblete J, Bolívar J, Albaladejo J (2009) Year-round observations of no, no2, o3, so2 and toluene. Water Air Soil Pollut 200:277–288

    Article  Google Scholar 

  • Shaddick G, Yan H, Salway R, Vienneau D, Kounali D, Briggs D (2013) Large-scale bayesian spatial modelling of air pollution for policy support. J Appl Stat 40:777–794

    Article  MathSciNet  Google Scholar 

  • Stedman J, Goodwin J, King K, Murrells T, Bush T (2001) An empirical model for predicting urban roadside nitrogen dioxide concentrations in UK. Atmos Environ 35:1451–1463

    Article  Google Scholar 

  • Stein M (2005) Space-time covariance functions. J Am Stat Assoc 469:310–320

    Article  Google Scholar 

  • Stone M (1974) Cross-validatory choice and assessment of statistical predictions. J R Stat Soc B 36:111–133

    MATH  Google Scholar 

  • WHO (2003) Health aspects of air pollution with particulate matter, ozone and nitrogen dioxide. World Health Organization, Germany

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel Menezes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menezes, R., Piairo, H., García-Soidán, P. et al. Spatial–temporal modellization of the \(\hbox {NO}_{2}\) concentration data through geostatistical tools. Stat Methods Appl 25, 107–124 (2016). https://doi.org/10.1007/s10260-015-0346-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10260-015-0346-3

Keywords

Navigation