Discussion of “Multivariate functional outlier detection”

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Arribas-Gil A, Romo J (2014) Shape outlier detection and visualisation for functional data: the outliergram. Biostatistics 15:603–619

    Article  Google Scholar 

  2. Hubert M, Rousseeuw PJ, Segaert P (2015) Multivariate functional outlier detection. Stat Methods Appl. doi:10.1007/s10260-015-0297-8

  3. Hyndman RJ, Shang HL (2010) Rainbow plots, bagplots, and boxplots for functional data. J Comput Graph Stat 19:29–49

    MathSciNet  Article  Google Scholar 

  4. López-Pintado S, Romo J (2011) A half-region depth for functional data. Computat Stat Data Anal 55:1679–1695

    Article  Google Scholar 

  5. Sun Y, Genton MG (2011) Functional boxplots. J Comput Graph Stat 20:316–334

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Mia Hubert, Peter Rousseeuw and Pieter Segaert for kindly providing all the data sets and the R code of all the procedures described in their article.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ana Arribas-Gil.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arribas-Gil, A., Romo, J. Discussion of “Multivariate functional outlier detection”. Stat Methods Appl 24, 263–267 (2015). https://doi.org/10.1007/s10260-015-0328-5

Download citation

Keywords

  • Outlier Detection
  • Functional Data Analysis
  • Detection Rule
  • Shape Outlier
  • Functional Depth