Statistical Methods & Applications

, Volume 23, Issue 3, pp 435–449 | Cite as

Kernel-based semiparametric multinomial logit modelling of political party preferences

  • Roland Langrock
  • Nils-Bastian Heidenreich
  • Stefan Sperlich
Article
  • 182 Downloads

Abstract

Conventional, parametric multinomial logit models are in general not sufficient for capturing the complex structures of electorates. In this paper, we use a semiparametric multinomial logit model to give an analysis of party preferences along individuals’ characteristics using a sample of the German electorate in 2006. Germany is a particularly strong case for more flexible nonparametric approaches in this context, since due to the reunification and the preceding different political histories the composition of the electorate is very complex and nuanced. Our analysis reveals strong interactions of the covariates age and income, and highly nonlinear shapes of the factor impacts for each party’s likelihood to be supported. Notably, we develop and provide a smoothed likelihood estimator for semiparametric multinomial logit models, which can be applied also in other application fields, such as, e.g., marketing.

Keywords

Kernel regression Multiple choice models Profile likelihood Semiparametric modelling Voter profiling 

Supplementary material

10260_2014_261_MOESM1_ESM.r (18 kb)
Supplementary material 1 (r 17 KB)

References

  1. Abe M (1998) Measuring consumers nonlinear brand choice response to price. J Retail 74:541–568CrossRefGoogle Scholar
  2. Abe M (1999) A generalized additive model for discrete-choice data. J Bus Econ Stat 17:271–284Google Scholar
  3. Adler D, Murdoch D (2009) Package ‘rgl’—3D visualization device system (OpenGL). http://rgl.neoscientists.org
  4. Akima H (1978) A method of bivariate interpolation and smooth surface fitting for irregularly distributed data points. ACM Trans Math Softw 4:148–164CrossRefMATHGoogle Scholar
  5. Ben-Akiva M, Lerman SL (1985) Discrete choice analysis: theory and application to travel demand. The MIT Press, Cambridge, MAGoogle Scholar
  6. Curtice J, Firth D (2008) Exit polling in a cold climate: the BBCITV experience in Britain in 2005. J R Stat Soc Series A 171:509–539CrossRefMathSciNetGoogle Scholar
  7. Domencich T, McFadden D (1975) Urban travel demand: a behavioral analysis. North-Holland publishing Co., AmsterdamGoogle Scholar
  8. Dow JK, Endersby JW (2004) Multinomial probit and multinomial logit: a comparison of choice models for voting research. Elect Stud 23:107–122CrossRefGoogle Scholar
  9. Fisher SD, Ford R, Jennings W, Pickup M, Wlezien C (2011) From polls to votes to seats: forecasting the, 2010 British general election. Elect Stud 30:250–257CrossRefGoogle Scholar
  10. Gneiting T, Raftery AE (2007) Strictly proper scoring rules, prediction, and estimation. J Am Stat Assoc 102:359–378CrossRefMATHMathSciNetGoogle Scholar
  11. Härdle W, Huet S, Mammen E, Sperlich S (2004a) Bootstrap inference in semiparametric generalized additive models. Econ Theory 20:265–300CrossRefMATHGoogle Scholar
  12. Härdle W, Müller M, Sperlich S, Werwatz A (2004b) Nonparametric and semiparametric models. Springer Series in Statistics, BerlinCrossRefMATHGoogle Scholar
  13. Hastie TJ, Tibshirani RJ (1986) Generalized additive models. Stat Sci 1:297–318CrossRefMathSciNetGoogle Scholar
  14. Hausman J, McFadden D (1984) Specification tests for the multinomial logit model. Econometrica 52:1219–1240CrossRefMATHMathSciNetGoogle Scholar
  15. Kalyanaram D, Little JDC (1994) An empirical analysis of latitude of price acceptance in consumer package goods. J Consumer Res 21:408–418CrossRefGoogle Scholar
  16. Kneib T, Baumgartner B, Steiner WJ (2007) Semiparametric multinomial logit models for analysing consumer choice behaviour. Adv Stat Anal 91:225–244CrossRefMATHMathSciNetGoogle Scholar
  17. Köhler M, Schindler A, Sperlich S (2014) A review and comparison of bandwidth selection methods for Kernel regression. Int Stat Rev (in press)Google Scholar
  18. Krishnamurthi L, Raj SP (1988) A model of brand choice and purchase quantity price sensitivities. Market Sci 7:1–20CrossRefGoogle Scholar
  19. Lösche P (1993) Kleine Geschichte der deutschen Parteien. Kohlhammer, StuttgartGoogle Scholar
  20. McFadden D (1974) Conditional logit analysis of qualitative choice behavior. In: Zarembka P (ed) Frontiers in econometrics, Academic Press, New York, pp 105–142Google Scholar
  21. Müller M (2001) Estimation and testing in gerneralized partial linear models: a comparative study. Stat Comput 11:299–309CrossRefMathSciNetGoogle Scholar
  22. Quinn KM, Martin AD, Whitford AB (1999) Voter choice in multi-party democracies: a test of competing theories and models. Am J Political Sci 43:1231–1247CrossRefGoogle Scholar
  23. Roca-Pardinas J, Sperlich S (2010) Feasible estimation in generalized structured models. Stat Comput 20:367–379CrossRefMathSciNetGoogle Scholar
  24. Severini TA, Wong WH (1992) Generalized profile likelihood and conditionally parametric models. Ann Stat 20:1768–1802CrossRefMATHMathSciNetGoogle Scholar
  25. Small KA, Hsiao C (1985) Multinomial logit specification tests. Int Econ Rev 26:619–627CrossRefMATHMathSciNetGoogle Scholar
  26. Sperlich S, Tjøstheim D, Yang L (2002) Nonparametric estimation and testing of interaction in additive models. Econ Theory 18:197–251CrossRefMATHGoogle Scholar
  27. Tutz G, Scholz T (2004) Semiparametric modelling of multicategorical data. J Stat Comput Simul 74:183–200CrossRefMATHMathSciNetGoogle Scholar
  28. Walter F (2008) Baustelle Deutschland. Suhrkamp, Frankfurt am MainGoogle Scholar
  29. Yee TW, Wild CJ (1996) Vector generalized additive models. J R Stat Soc B 58:481–493MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Roland Langrock
    • 1
  • Nils-Bastian Heidenreich
    • 2
  • Stefan Sperlich
    • 3
  1. 1.University of St AndrewsSt AndrewsUK
  2. 2.Georg-August-Universität GöttingenGöttingenGermany
  3. 3.Université de GenèveGenevaSwitzerland

Personalised recommendations