Skip to main content
Log in

A Sarmanov family with beta and gamma marginal distributions: an application to the Bayes premium in a collective risk model

  • Published:
Statistical Methods & Applications Aims and scope Submit manuscript

Abstract

In this paper we firstly develop a Sarmanov–Lee bivariate family of distributions with the beta and gamma as marginal distributions. We obtain the linear correlation coefficient showing that, although it is not a strong family of correlation, it can be greater than the value of this coefficient in the Farlie–Gumbel–Morgenstern family. We also determine other measures for this family: the coefficient of median concordance and the relative entropy, which are analyzed by comparison with the case of independence. Secondly, we consider the problem of premium calculation in a Poisson–Lindley and exponential collective risk model, where the Sarmanov–Lee family is used as a structure function. We determine the collective and Bayes premiums whose values are analyzed when independence and dependence between the risk profiles are considered, obtaining that notable variations in premiums values are obtained even when low levels of correlation are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bairamov I, Kotz S (1999) On a generalization of FGM and Sarmanov–Lee class of distributions. Lifetime Data Anal

  • Bairamov I, Kotz S, Gebizlioglu OL (2001) The Sarmanov family and its generalization. S Afr Stat J 35(2): 205–224

    MathSciNet  MATH  Google Scholar 

  • Barnett V (1985) The bivariate exponential distribution; a review and some new results. Stat Neerlandica 39: 342–357

    Article  Google Scholar 

  • Clemen R, Reilly T (1999) Correlations and copulas for decision and risk analysis. Manag Sci 45: 208–224

    Article  MATH  Google Scholar 

  • Cohen L (1984) Probability distributions with given multivariate marginals. J Math Phys 25: 2402–2403

    Article  MathSciNet  MATH  Google Scholar 

  • Cook RD, Johnson ME (1986) Generalized Burr-Pareto-logistic distribution with application to uranium exploration data set. Technometrics 28: 123–131

    Article  MathSciNet  Google Scholar 

  • Danaher PJ (2008) Advertising models. In: Woerenga B (ed) Handbook of marketing decision models. Springer, New York, pp 81–106

    Chapter  Google Scholar 

  • D’Este GM (1981) A Morgenstern-type bivariate gamma distribution. Biometrika 68(1): 339–340

    Article  MathSciNet  Google Scholar 

  • Drouet D, Kotz S (2001) Correlation and dependence. Imperial Press, Singapore

    MATH  Google Scholar 

  • Duffley MR, van Dorp JR (1998) Risk analysis for large engineering projects: modeling cost uncertainty for ship production activities. J Eng Valuat Cost Anal 2: 285–301

    Google Scholar 

  • Frees EW, Valdez EA (1998) Understanding relation ships using copulas. NAAJ 2(1): 1–25

    MathSciNet  MATH  Google Scholar 

  • Genest C, Mackay J (1986) The joy of copulas, bivariate distributions with uniform marginals. Am Stat 40(4): 280–283

    MathSciNet  Google Scholar 

  • Gerber HU (1979) An introduction to mathematical risk theory. Huebner Foundation for Insurance Education, Monograph, vol 8. University of Pennsylvania

  • Ghitany ME, Al-Mutairi DK, Nadarajah S (2008) Zero-truncated Poisson–Lindley distribution and its applications. Math Comput Simul 79(3): 279–287

    Article  MathSciNet  MATH  Google Scholar 

  • Ghitany ME, Al-Mutairi DK (2009) Estimation methods for the discrete Poisson–Lindley distribution. J Stat Comput Simul 79(1): 1–9

    Article  MathSciNet  MATH  Google Scholar 

  • Glady N, Lemmens A, Croux C (2010) Modelling within-and-across-customer association in lifetime value with copulas. Center discussion paper series no 2010-103. http://ssm.com/abstract=1690448

  • Goovaerts MJ, De Vylder F, Haezendock J (1984) Insurance premiums: theory and applications. North-Holland, Amsterdam

    MATH  Google Scholar 

  • Grandell J (1997) Mixed poisson processes. Chapman and Hall, New York

    MATH  Google Scholar 

  • Härdle W, Kleinow T, Stahl G (2002) Applied quantitative finance, theory and computational tools. Springer, e-book

  • Heilmann W (1989) Decision theoretic foundations of credibility theory. Insurance Math Econ 8: 77–95

    Article  MathSciNet  MATH  Google Scholar 

  • Hernández-Bastida A, Fernández-Sánchez MP, Gómez-Déniz E (2009) The net Bayes premium with dependence between the risk profiles. Insurance Math Econ 45: 245–257

    Article  Google Scholar 

  • Hernández-Bastida A, Fernández-Sánchez MP, Gómez-Déniz E (2011) Collective risk model: Poisson–Lindley and exponential distributions for Bayes premium and operational risk. J Stat Comput Simul 81(6): 759–778

    Article  MathSciNet  MATH  Google Scholar 

  • Hougaard P (1995) Frailty models for survival data. Lifetime Data Anal 1: 255–273

    Article  Google Scholar 

  • Huang JS, Lin GD (2011) A note on the Sarmanov bivariate distributions. Appl Math Comput. doi:10.1016/j.amc.2011.01.087

  • Johnson NL, Kotz S (1975) On some generalized Farlie–Gumbel–Morgenstern distribution. Commun Stat Theory Methods 4: 415–427

    Article  MathSciNet  MATH  Google Scholar 

  • Johnson NL, Kotz S (1977) On some generalized Farlie–Gumbel–Morgenstern distribution II: regression, correlation and further generalization. Comm Stat Theory Methods 6: 485–496

    Article  MathSciNet  Google Scholar 

  • Karlis D, Xekalaki E (2005) Mixed poisson distributions. Int Stat Rev 73: 35–58

    Article  MATH  Google Scholar 

  • Klugman SA (1992) Bayesian statistics in actuarial science. Kluwer, Dordrecht

    MATH  Google Scholar 

  • Klugman SA, Panjer HH, Willmot GE (2004) Loss models: from data to decision. Wiley Interscience, New Jersey

    Google Scholar 

  • Kotz S, Balakrishnan N, Johnson NL (2000) Continuous multivariate distributions. vol 1: models and applications, 2nd edn. Wiley

  • Kotz S, Van Dorp JR (2002) A versatile bivariate distribution on a bounded domain: another look at the product moment correlation. J Appl Stat 29: 1165–1179

    Article  MathSciNet  MATH  Google Scholar 

  • Lee ML (1996) Properties and applications of the Sarmanov family of bivariate distributions. Commun Stat Theory Methods 25(6): 1207–1222

    Article  MATH  Google Scholar 

  • Lin GD, Huang JS (2011) Maximum correlation for the generalized Sarmanov bivariate distributions. J Stat Plan Inference. doi:10.1016/j.jspi.2011.02.024

  • Lindley DV (1958) Fiducial distributions and Bayes’s theorem. J R Stat Soc Ser B Methodol 1: 102–107

    MathSciNet  Google Scholar 

  • Lingappaiah GS (1984) Bivariate gamma distribution as a life test model. Appl Math 29: 182–188

    MathSciNet  MATH  Google Scholar 

  • Mahmoudi E, Zakerzadeh H (2010) Generalized Poisson–Lindley distribution. Commun Stat Theory Methods 39: 1785–1798

    Article  MathSciNet  MATH  Google Scholar 

  • Martel-Escobar M, Hernández-Bastida A, Vázquez-Polo FJ (2012) On the independence between risk profiles in the compound collective risk actuarial model. Math Comput Simul. doi:10.1016/j.matcom.2012.01.003

  • McNeil AJ, Frey R, Embrechts P (2005) Quantitative risk management: concepts, techniques and tools. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Morgenstern D (1956) Einfache beispiele zweidimensionaler verteilungen. Mitt Math Stat 8: 234–235

    MathSciNet  MATH  Google Scholar 

  • Nadarajah S, Kotz S (2006a) Compound mixed Poisson distributions II. Scand Actuar J 3: 141–162

    Article  MathSciNet  Google Scholar 

  • Nadarajah S, Kotz S (2006b) Compound mixed Poisson distributions II. Scand Actuar J 3: 163–181

    Article  MathSciNet  Google Scholar 

  • Nelsen RB (1994) A characterization of Farlie–Gumbel–Morgenstern distributions via Spearman’s rho and chi-square divergence. Sanhkyā 56: 476–479

    MATH  Google Scholar 

  • Nikoloulopoulos AK, Karlis D (2008) On modelling count data: a comparison of some well-known discrete distributions. J Stat Comput Simul 78: 437–457

    Article  MathSciNet  MATH  Google Scholar 

  • Sankaran M (1970) The discrete Poisson–Lindley distribution. Biometrics 26(1): 145–149

    Article  Google Scholar 

  • Sarmanov OV (1966) Generalized normal correlation and two-dimensional Frechet classes. Dokl Math 168: 596–599

    MathSciNet  Google Scholar 

  • Schweidel DA, Fader PS, Bradlow ET (2008) A bivariate timing model of customer acquisition and retention. Mark Sci 27: 829–843

    Article  Google Scholar 

  • Schucany WR, Parr WC, Boyer JE (1978) Correlation structure in Farlie–Gumbel–Morgenstern distributions. Biometrika 65: 650–653

    Article  MathSciNet  MATH  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Technol J 27: 379–423

    MathSciNet  MATH  Google Scholar 

  • Shevchenko PV, Wüthrich MV (2006) The structural modelling of operational risk via Bayesian inference: combining loss data with expert opinions. J Oper Risk 1(3): 3–26

    Google Scholar 

  • Shubina M, Lee MT (2004) On maximum attainable correlation and other measures of dependence for the Sarmanov family of bivariate distributions. Commun Stat Theory Methods 35(5): 1031–1052

    MathSciNet  Google Scholar 

  • Tank F, Gebizlioglu OL (2004) Sarmanov distribution class for dependent risks and its applications. Belgian Actuar Bull 4(1): 50–52

    Google Scholar 

  • Willett PK, Thomas JB (1985) A simple bivariate density representation. In: Proceedings of the 23rd annual allerton conference on communicating control and computing. Coordinated Science Laboratory and Department of Electrical and Computer Engineering. University of Illinois, Urbana-Champaign, pp 888–897

  • Willett PK, Thomas JB (1987) Mixture models for underwater burst noise and their relationship to simple bivariate density representation. IEEE J Ocean Eng 12: 29–37

    Article  Google Scholar 

  • Yi W, Bier V (1998) An application of copulas to accident precursor analysis. Manag Sci 44: 5257–5270

    Article  Google Scholar 

  • Zakerzadeh H, Dolati A (2009) Generalized Lindley distribution. J Math Ext 3(2): 13–25

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agustín Hernández-Bastida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernández-Bastida, A., Fernández-Sánchez, M.P. A Sarmanov family with beta and gamma marginal distributions: an application to the Bayes premium in a collective risk model. Stat Methods Appl 21, 391–409 (2012). https://doi.org/10.1007/s10260-012-0194-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10260-012-0194-3

Keywords

Navigation