Skip to main content
Log in

Assessing the pattern of covariance matrices via an augmentation multiple testing procedure

  • Published:
Statistical Methods & Applications Aims and scope Submit manuscript

Abstract

This paper extends the scedasticity comparison among several groups of observations, usually complying with the homoscedastic and the heteroscedastic cases, in order to deal with data sets laying in an intermediate situation. As is well known, homoscedasticity corresponds to equality in orientation, shape and size of the group scatters. Here our attention is focused on two weaker requirements: scatters with the same orientation, but with different shape and size, or scatters with the same shape and size but different orientation. We introduce a multiple testing procedure that takes into account each of the above conditions. This approach discloses a richer information on the data underlying structure than the classical method only based on homo/heteroscedasticity. At the same time, it allows a more parsimonious parametrization, whenever the patterned model is appropriate to describe the real data. The new inferential methodology is then applied to some well-known data sets, chosen in the multivariate literature, to show the real gain in using this more informative approach. Finally, a wide simulation study illustrates and compares the performance of the proposal using data sets with gradual departure from homoscedasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson E (1935) The irises of the Gaspe peninsula. Bull Am Ir Soc 59: 2–5

    Google Scholar 

  • Banfield JD, Raftery AE (1993) Model-based gaussian and non-gaussian clustering. Biometrics 49(3): 803–821

    Article  MathSciNet  MATH  Google Scholar 

  • Bartlett MS (1937) Properties of sufficiency and statistical tests. Proc R Stat Soc Lond Ser A Math Phys Sci 160(901): 268–282

    Article  Google Scholar 

  • Benjamini Y (2010) Discovering the false discovery rate. J R Stat Soc Ser B (Methodol) 72(4): 405–416

    Article  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol) 57(1): 289–300

    MathSciNet  MATH  Google Scholar 

  • Bonferroni CE (1936) Teoria statistica delle classi e calcolo delle probabilita. Pubblicazioni dell’Istituto Superiore di Scienze Economiche e Commerciali di Firenze 8(1): 3–62

    Google Scholar 

  • Bretz F, Maurer W, Brannath W, Posch M (2009) A graphical approach to sequentially rejective multiple test procedures. Stat Med 28(4): 586–604

    Article  MathSciNet  Google Scholar 

  • Burman CF, Sonesson C, Guilbaud O (2009) A recycling framework for the construction of Bonferroni-based multiple tests. Stat Med 28(5): 739–761

    Article  MathSciNet  Google Scholar 

  • Campbell NA, Mahon RJ (1974) A multivariate study of variation in two species of rock crab of genus Leptograpsus. Aust J Zool 22(3): 417–425

    Article  Google Scholar 

  • Celeux G, Govaert G (1995) Gaussian parsimonious clustering models. Pattern Recognit 28(5): 781–793

    Article  Google Scholar 

  • Dudoit S, van der Laan MJ (2008) Multiple testing procedures with applications to genomics. Springer, New York

    Book  MATH  Google Scholar 

  • Farcomeni A (2008) A review of modern multiple hypothesis testing, with particular attention to the false discovery proportion. Stat Methods Med Res 17(4): 347–388

    Article  MathSciNet  MATH  Google Scholar 

  • Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7(2): 179–188

    Article  Google Scholar 

  • Flury BN (1984) Common principal components in k groups. J Am Stat Assoc 79(388): 892–898

    Article  MathSciNet  Google Scholar 

  • Flury BN (1988) Common principal components and related multivariate models. Wiley, New York

    MATH  Google Scholar 

  • Flury BN, Constantine G (1985) The F-G diagonalization algorithm. Appl Stat 35: 177–183

    Article  Google Scholar 

  • Flury BN, Gautschi W (1986) An algorithm for simultaneous orthogonal transformation of several positive definite matrices to nearly diagonal form. SIAM J Sci Stat Comput 7: 169–184

    Article  MathSciNet  MATH  Google Scholar 

  • Flury BN, Riedwyl H (1983) Angewandte multivariate statistik. Verlag Gustav Fischer, Jena

    MATH  Google Scholar 

  • Gabriel KR (1969) Simultaneous test procedures–some theory of multiple comparisons. Ann Math Stat 40(1): 224–250

    Article  MathSciNet  MATH  Google Scholar 

  • Genovese CR, Wasserman L (2006) Exceedance control of the false discovery proportion. J Am Stat Assoc 101(476): 1408–1417

    Article  MathSciNet  MATH  Google Scholar 

  • Goeman J, Finos L (2010) The inheritance procedure: multiple testing of tree-structured hypotheses (unpublished preprint dowloadable from http://www.msbi.nl/dnn/Default.aspx?tabid=202)

  • Goeman J, Solari A (2010) The sequential rejection principle of familywise error control. Ann Stat (to appear)

  • Greselin F, Ingrassia S (2009) Weakly homoscedastic constraints for mixtures of t distributions. In: Fink A, Lausen B, Seidel W, Ultsch A (eds) Advances in data analysis, data handling and business intelligence. Springer, Berlin, pp 219–228

  • Greselin F, Ingrassia S (2010) Constrained monotone EM algorithms for mixtures of multivariate t distributions. Stat Comput 20(1): 9–22

    Article  Google Scholar 

  • Hawkins DM (1981) A new test for multivariate normality and homoscedasticity. Technometrics 23(1): 105–110

    Article  MathSciNet  MATH  Google Scholar 

  • Hochberg Y, Tamhane AC (1987) Multiple comparison procedures. Wiley, New York

    Book  MATH  Google Scholar 

  • Holland BS, Copenhaver MDP (1987) An improved sequentially rejective Bonferroni test procedure. Biometrics 43(2): 417–423

    Article  MathSciNet  MATH  Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6(2): 65–70

    MathSciNet  MATH  Google Scholar 

  • Jolicoeur P (1963) The degree of generality of robustness in Martes Americana. Growth 27: 1–27

    Google Scholar 

  • Jolicoeur P, Mosimann J (1960) Size and shape variation in the painted turtle: a principal component analysis. Growth 24(4): 339–354

    Google Scholar 

  • Marcus R, Peritz E, Gabriel KR (1976) On closed testing procedures with special reference to ordered analysis of variance. Biometrika 63(3): 655–660

    Article  MathSciNet  MATH  Google Scholar 

  • Mardia KV (1985) Mardia’s test of multinormality. In: Kotz S, Johnson NL (eds) Encyclopedia of statistical sciences, vol 5. Wiley, New York, pp 217–221

    Google Scholar 

  • McLachlan GJ, Peel D (2000) Finite mixture models. Wiley, New York

    Book  MATH  Google Scholar 

  • Murtagh F, Raftery A (1984) Fitting straight lines to point patterns. Pattern Recognit 17(5): 479–483

    Article  Google Scholar 

  • Peel D, McLachlan GJ (2000) Robust mixture modelling using the t distribution. Stat Comput 10(4): 339–348

    Article  Google Scholar 

  • Rencher AC (1998) Multivariate statistical inference and applications. Wiley, New York

    MATH  Google Scholar 

  • Ripley B (1996) Pattern recognition and neural network. Cambridge University Press, Cambridge

    Google Scholar 

  • Rosenthal R, Rubin DB (1983) Ensemble adjusted p-values. Psychol Bull 94(3): 540–541

    Article  Google Scholar 

  • Shaffer JP (1995) Multiple hypothesis testing. Ann Rev Psychol 46(1): 561–584

    Article  Google Scholar 

  • Sheskin DJ (2000) Handbook of parametric and nonparametric statistical procedures. Chapman & Hall, London

    MATH  Google Scholar 

  • Van der Laan MJ, Duduoit S, Pollard KS (2004) Augmentation procedures for control of the generalized family-wise error rate and tail probabilities for the proportion of false positives. Stat Appl Genet Mol Biol 3(1):Article 15

  • Westfall PH, Young SS (1993) Resampling-based multiple testing: examples and methods for p-value adjustment. Wiley, New York

    Google Scholar 

  • Wright SP (1992) Adjusted p-values for simultaneous inference. Biometrics 48(4): 1005–1013

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Greselin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greselin, F., Ingrassia, S. & Punzo, A. Assessing the pattern of covariance matrices via an augmentation multiple testing procedure. Stat Methods Appl 20, 141–170 (2011). https://doi.org/10.1007/s10260-010-0157-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10260-010-0157-5

Keywords

Navigation