Skip to main content
Log in

Fast and robust bootstrap

  • Original Article
  • Published:
Statistical Methods and Applications Aims and scope Submit manuscript

Abstract

In this paper we review recent developments on a bootstrap method for robust estimators which is computationally faster and more resistant to outliers than the classical bootstrap. This fast and robust bootstrap method is, under reasonable regularity conditions, asymptotically consistent. We describe the method in general and then consider its application to perform inference based on robust estimators for the linear regression and multivariate location-scatter models. In particular, we study confidence and prediction intervals and tests of hypotheses for linear regression models, inference for location-scatter parameters and principal components, and classification error estimation for discriminant analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrover J, Salibian-Barrera M, Zamar R (2004) Globally robust inference for the location and simple linear regression models. J Statist Plann Inf 119:353–375

    Article  MATH  MathSciNet  Google Scholar 

  • Beaton AE, Tukey JW (1974) The fitting of power series, meaning polynomials, illustrated on band-spectroscopic data. Technometrics 16:147–185

    Article  MATH  Google Scholar 

  • Beran R, Srivastava MS (1985) Bootstrap tests and confidence regions for functions of a covariance matrix. Ann Statist 13:95–115

    Article  MATH  MathSciNet  Google Scholar 

  • Bickel PJ, Freedman DA (1981) Some asymptotic theory for the bootstrap. Ann Statist 9:1196–1217

    Article  MATH  MathSciNet  Google Scholar 

  • Campbell NA (1980) Robust procedures in multivariate analysis: robust covariance estimation. Appl Statist 29:231–237

    Article  MATH  Google Scholar 

  • Carroll RJ (1978) On almost sure expansions for M-estimates. Ann Statist 6:314–318

    Article  MATH  MathSciNet  Google Scholar 

  • Carroll RJ (1979) On estimating variances of robust estimators when the errors are asymmetric. J Am Statist Assoc 74:674–679

    Article  MATH  Google Scholar 

  • Carroll RJ, Welsh AH (1988) A note on asymmetry and robustness in linear regression. Am Statist 42:285–287

    Article  MathSciNet  Google Scholar 

  • Croux C, Dehon C (2001) Robust linear discriminant analysis using S-estimators. Can J Statist 29:473–492

    Article  MATH  MathSciNet  Google Scholar 

  • Croux C, Dhaene G, Hoorelbeke D, (2003) Robust standard errors for robust estimators. Research report, Dept. of Applied Economics, K.U. Leuven

  • Croux C, Haesbroeck G (2000) Principal components analysis based on robust estimators of the covariance or correlation matrix: influence functions and efficiencies. Biometrika 87:603–618

    Article  MATH  MathSciNet  Google Scholar 

  • Davies PL (1987) Asymptotic behavior of S-estimates of multivariate location parameters and dispersion matrices. Ann Statist 15:1269–1292

    Article  MATH  MathSciNet  Google Scholar 

  • Davies PL (1990) The asymptotics of S-estimators in the linear regression model. Ann Statist 18:1651–1675

    Article  MATH  MathSciNet  Google Scholar 

  • Davison AC, Hinkley DV (1997) Bootstrap methods and their application. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge

    Google Scholar 

  • Daudin JJ, Duby C, Trecourt P (1988) Stability of principal component analysis studied by the bootstrap method. Statist 19:241–258

    MATH  MathSciNet  Google Scholar 

  • Devlin SJ, Gnanadesikan R, Kettenring JR (1981) Robust estimation of dispersion matrices and principal components. J Am Statist Assoc 76:354–362

    Article  MATH  Google Scholar 

  • Diaconis P, Efron B (1983) Computer-intensive methods in statistics. Sci Am 248:96–108

    Article  Google Scholar 

  • Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Statist 7:1–26

    Article  MATH  MathSciNet  Google Scholar 

  • Efron B (1983) Estimating the error rate of a prediction rule: some improvements on cross-validation. J Am Statist Assoc 78:316–331

    Article  MATH  MathSciNet  Google Scholar 

  • Fisher NI, Hall P (1990) On bootstrap hypothesis testing. Aust J Statist 32:177–190

    Article  MathSciNet  Google Scholar 

  • Flury B, Riedwyl H (1988) Multivariate Statistics: A practical approach. Cambridge University Press, Cambridge

    Google Scholar 

  • Freedman DA (1981) Bootstrapping regression models. Ann Statist 9:1218–1228

    Article  MATH  MathSciNet  Google Scholar 

  • Habbema JDF, Hermans J, Van den Broeck K (1974) A stepwise discriminant analysis program using density estimation. In: Bruckmann G, Ferschl F, Schmetterer L (eds) Proceedings in computational statistics. Physica-Verlag, Vienna, pp 101–110

  • Hall P, Wilson SR (1991) Two guidelines for bootstrap hypothesis testing. Biometrics 47:757–762

    Article  MathSciNet  Google Scholar 

  • Hawkins DM, McLachlan GJ (1997) High breakdown linear discriminant analysis. J Am Statist Assoc 92:136–143

    Article  MATH  MathSciNet  Google Scholar 

  • He X, Fung WK (2000) High breakdown estimation for multiple populations with applications to discriminant analysis. J Multivar Anal 72:151–162

    Article  MATH  MathSciNet  Google Scholar 

  • Huber PJ (1981) Robust statistics. Wiley, New York

    MATH  Google Scholar 

  • Hubert M, Van Driessen K (2004) Fast and robust discriminant analysis. Computat Statist Data Anal 45:301–320

    Article  MathSciNet  MATH  Google Scholar 

  • Krasker WS, Welsch RE (1982) Efficient bounded influence regression estimation. J Am Statist Assoc 77:595–604

    Article  MATH  MathSciNet  Google Scholar 

  • Lopuhaä H (1989) On the relation between S-estimators and M-estimators of multivariate location and covariance. Ann Statist 17:1662–1683

    Article  MATH  MathSciNet  Google Scholar 

  • Lopuhaä H (1992) Multivariate tau-estimators. Can J Statist 19:307–321

    Article  Google Scholar 

  • Markatou M, Stahel W, Ronchetti E (1991) Robust M-type testing procedures for linear models. In: Directions in robust statistics and diagnostics, Part I, pp 201–220, IMA Vol. Math. Appl. 33, Springer, New York

  • Maronna RA (1976) Robust M-estimators of multivariate location and scatter. Ann Statist 4:51–67

    Article  MATH  MathSciNet  Google Scholar 

  • Omelka M, Salibian-Barrera M (2006) Uniform asymptotics for S- and MM-regression estimators. Unpublished manuscript. Available on-line at http://hajek.stat.ubc.ca/~matias/pubs.html

  • Randles RH, Broffitt JD, Ramsberg JS, Hogg RV (1978) Generalized linear and quadratic discriminant functions using robust estimators. J Am Statist Assoc 73:564–568

    Article  MATH  Google Scholar 

  • Rocke DM, Downs GW (1981) Estimating the variances of robust estimators of location: influence curve, jackknife and bootstrap. Commun Statist Part B – Simul Computat 10:221–248

    Article  Google Scholar 

  • Rousseeuw PJ, Leroy AM (1987) Robust regression and outlier detection. Wiley, New York

    MATH  Google Scholar 

  • Rousseeuw PJ, Molenberghs G (1993) Transformation of non positive semidefinite correlation matrices. Commun Statist Part A – Theory and Methods 22:965–984

    Article  MATH  Google Scholar 

  • Rousseeuw PJ, Van Aelst S, Van Driessen K, Agullo J (2004) Robust multivariate regression. Technometrics 46:293–305

    Article  MathSciNet  Google Scholar 

  • Rousseeuw PJ, Yohai VJ (1984) Robust regression by means of S-estimators. In: Robust and nonlinear time series. Franke J, Hardle W, Martin D, (eds) Lecture Notes in Statist., vol 26. Springer, Berlin, pp 256–272

  • Salibian-Barrera M (2000) Contributions to the theory of robust Inference. Unpublished Ph.D. Thesis. University of British Columbia, Department of Statistics, Vancouver, BC. Available on-line at ftp://ftp.stat.ubc.ca/pub/matias/Thesis

  • Salibian-Barrera M (2005) Estimating the p-values of robust tests for the linear model. J Statist Plann Inf 128:241–257

    Article  MATH  MathSciNet  Google Scholar 

  • Salibian-Barrera M (2006a) The asymptotics of MM-estimators for linear regression with fixed designs. Metrika 63:283–294

    Article  MATH  MathSciNet  Google Scholar 

  • Salibian-Barrera M (2006b) Bootstrapping MM-estimators for linear regression with fixed designs. Statist Probab Lett 76:1287–1297

    Article  MATH  MathSciNet  Google Scholar 

  • Salibian-Barrera M, Van Aelst S, Willems G (2006) PCA based on multivariate MM-estimators with fast and robust bootstrap. J Am Statist Assoc 101:1198–1211

    Article  MATH  MathSciNet  Google Scholar 

  • Salibian-Barrera M, Yohai V (2006) A fast algorithm for S-regression estimates. J Comput Graph Statist 15:414–427

    Article  MathSciNet  Google Scholar 

  • Salibian-Barrera M, Zamar RH (2002) Bootstrapping robust estimates of regression. Ann Statist 30:556–582

    Article  MATH  MathSciNet  Google Scholar 

  • Singh K (1998) Breakdown theory for bootstrap quantiles. Ann Statist 26:1719–1732

    Article  MATH  MathSciNet  Google Scholar 

  • Stromberg AJ (1997) Robust covariance estimates based on resampling. J Statist Plann Inf 57: 321–334

    Article  MATH  MathSciNet  Google Scholar 

  • Tatsuoka KS, Tyler DE (2000) The uniqueness of S and M-functionals under non-elliptical distributions. Ann Statist 28:1219–1243

    Article  MATH  MathSciNet  Google Scholar 

  • Van Aelst S, Willems G (2004) Multivariate regression S-estimators for robust estimation and inference. Technical report, available at http://users.ugent.be/~svaelst/publications.html

  • Van Aelst S, Willems G (2005) Multivariate regression S-estimators for robust estimation and inference. Statist Sinica 15:981–1001

    MATH  MathSciNet  Google Scholar 

  • Yohai VJ (1987) High breakdown-point and high efficiency robust estimates for regression. Ann Statist 15:642–656

    Article  MATH  MathSciNet  Google Scholar 

  • Yohai VJ, Zamar RH (1988) High breakdown-point estimates of regression by means of the minimization of an efficient scale. J Am Statist Assoc 83:406–413

    Article  MATH  MathSciNet  Google Scholar 

  • Yohai VJ, Zamar RH (1998) Optimal locally robust M-estimates of regression. J Statist Plann Inf 64:309–323

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matías Salibián-Barrera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salibián-Barrera, M., Van Aelst, S. & Willems, G. Fast and robust bootstrap. Stat. Meth. & Appl. 17, 41–71 (2008). https://doi.org/10.1007/s10260-007-0048-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10260-007-0048-6

Keywords

Navigation