Skip to main content
Log in

Ambarzumyan’s Theorem for the Dirac Operator on Equilateral Tree Graphs

  • Published:
Acta Mathematicae Applicatae Sinica, English Series Aims and scope Submit manuscript

Abstract

The classical Ambarzumyan’s theorem states that if the Neumann eigenvalues of the Sturm-Liouville operator \( - {{{d^2}} \over {d{x^2}}} + q\) with an integrable real-valued potential q on [0, π] are {n2: n ≥ 0}, then q = 0 for almost all x ∈ [0, π]. In this work, the classical Ambarzumyan’s theorem is extended to the Dirac operator on equilateral tree graphs. We prove that if the spectrum of the Dirac operator on graphs coincides with the unperturbed case, then the potential is identically zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adamyan, V., Langer, H., Tretter, C. and Winklmeier, M. Dirac-Krein systems on star graphs. Integral Equations and Operator Theory, 86: 121–150 (2016)

    Article  MathSciNet  Google Scholar 

  2. Ambarzumyan, V. A. Über eine Frage der Eigenwerttheorie. Z. Phys., 53: 690–695 (1929)

    Article  Google Scholar 

  3. Bolte, J., Harrison, J. Spectral statistics for the Dirac operator on graphs. J. Phy. A: Math. Gen., 36: 2747–2769 (2003)

    Article  MathSciNet  Google Scholar 

  4. Boman, J., Kurasov, P., Suhr, R. Schrödinger operators on graphs and geometry II. Spectral estimates for Li-potentials and an Ambartsumian theorem. Integr. Equ. Oper. Theory, 90: 40 (2018)

    Article  Google Scholar 

  5. Borg, G. Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe, Bestimmung der Differentialgleichung durch die Eigenwerte. Acta Math., 78: 1–96 (1946)

    Article  MathSciNet  Google Scholar 

  6. Borg, G. Uniqueness theorems in the spectral theory of y″ + (λ − q(x))y = 0. In Proc. 11th Scandinavian Congress of Mathematicians (Oslo: Johan Grundt Tanums Forlag), pp. 276–287 (1952)

    Google Scholar 

  7. Bulla, W., Trenkler, T. The free Dirac operator on compact and noncompact graphs. J. Math. Phys., 31: 1157–1163 (1990)

    Article  MathSciNet  Google Scholar 

  8. Carlson, R., Pivovarchik, V. N. Ambarzumian’s theorem for trees. Electronic J. Diff. Equa., Vol. 2007, 142: 1–9 (2007)

    Google Scholar 

  9. Chakravarty, N. K., Acharyya, S. K. On an extension of the theorem of V. A. Ambarzumyan. Proc. Roy. Soc. Edinb. A, 110: 79–84 (1988)

    Article  MathSciNet  Google Scholar 

  10. Chern, H. H., Law, C. K., Wang, H. J. Extension of Ambarzumyan’s theorem to general boundary conditions. J. Math. Anal. Appl., 309: 764–768 (2005) (corrigendum)

    Article  MathSciNet  Google Scholar 

  11. H. H. Chern, C. L. Shen, On the n-dimensional Ambarzumyan’s theorem. Inverse Problems, 13: 15–18 (1997)

    Article  MathSciNet  Google Scholar 

  12. Currie, S., Watson, B. The M-matrix inverse problem for the Sturm-Liouville equation on graphs. Proc. Roy. Soc. Edinburgh Sect. A, 139: 775–796 (2009)

    Article  MathSciNet  Google Scholar 

  13. Davies, E. B. An inverse spectral theorem. Journal of Operator Theory, 69: 195–208 (2013)

    Article  MathSciNet  Google Scholar 

  14. Dietz, B., Klaus, T., Miski-Oglu, M. and Richter, A. Spectral properties of superconducting microwave photonic crystals modeling Dirac billiards. Phys. Rev. B, 91: 035411 (2015)

    Article  Google Scholar 

  15. Gerritsma, R., Kirchmair, G., Zähringer, F., Solano, E., Blatt, R. and Roos, C. F. Quantum simulation of the Dirac equation. Nature, 463: 68–71 (2010)

    Article  Google Scholar 

  16. Harrell, E. M. On the extension of Ambarzunyan’s inverse spectral theorem to compact symmetric spaces. Amer. J. Math., 109: 787–795 (1987)

    Article  MathSciNet  Google Scholar 

  17. Horváth, M. On a theorem of Ambarzumyan. Proc. Roy. Soc. Edinb. A, 131, 899–907: 2001

    Article  Google Scholar 

  18. Horváth, M. On the stability in Ambarzumian theorems. Inverse Problems, 31: 025008 (9pp)(2015)

    Article  MathSciNet  Google Scholar 

  19. Kenyon, R. The Laplacian and Dirac operators on critical planar graphs. Invent. Math., 150: 409–439 (2002)

    Article  MathSciNet  Google Scholar 

  20. Kirac, A. A. On the Ambarzumyans theorem for the quasi-periodic problem. Analysis and Mathematical Physics, https://doi.org/10.1007/s13324-015-0118-0,1-4 (2015)

  21. Kiss, M. An n-dimensional Ambarzumyan type theorem for Dirac operators. Inverse Problems, 20: 1593–1597 (2004)

    Article  MathSciNet  Google Scholar 

  22. Kostrykin, V., Schrader, R. Kirchoff’s rule for quantumn wires. J. Phys. A: Math. Gen., 32: 595–630 (1999)

    Article  Google Scholar 

  23. Kottos, T., Smilansky, U. Quantum chaos on graphs. Phys. Rev. Lett., 79: 4794–4797 (1997)

    Article  Google Scholar 

  24. Kottos, T., Smilansky, U. Periodic orbit theory and spectral statistics for quantum graphs. Ann. Phys., 247: 76–124 (1999)

    Article  MathSciNet  Google Scholar 

  25. Kuchment, P. Quantum graphs: an introduction and a brief survey. arXiv: 0802.3442 v1 [math-ph] 23 Feb 2008

  26. Kurasov, P., Suhr, R. Asymptotically isospectral quantum graphs and generalised trigonometric polynomials. Journal of Mathematical Analysis and Applications, 488: 124049 (2020)

    Article  MathSciNet  Google Scholar 

  27. Kuznetsov, N. V. Generalization of a theorem of V. A. Ambarzumian. Dokl. Akad. Nauk SSSR, 146: 1259–1262 (1962) (in Russian)

    MathSciNet  Google Scholar 

  28. Law, C. K., Pivovarchik, V. N. Characteristic functions of quantum graphs. J. Phys. A: Math. Theor., 42: 035302 (11pp) (2009)

    Article  MathSciNet  Google Scholar 

  29. Law, C.K., Yanagida, E. A solution to an Ambarzumyan problem on trees. Kodai Journal of Mathematics, 35: 358–373 (2012)

    Article  MathSciNet  Google Scholar 

  30. Levitan, B. M., Gasymov, M. G. Determination of a differential equation by two of its spectra. Usp. Mat. Nauk, 19: 3–63 (1964)

    Google Scholar 

  31. Levitan, B. M., Sargsjan, I. S. Sturm-Liouville and Dirac Operators (Russian). Nauka, Moscow 1988: English transl., Kluwer, Dordrecht, 1991

    Google Scholar 

  32. Kiss, M. Spectral determinants and Ambarzumian type theorem on graphs. Integr. Equ. Oper. Theory, 92: 24 (2020)

    Article  MathSciNet  Google Scholar 

  33. Naimark, M. Linear Differential Operators: II. Ungar, New York, 1968 (translated from the second Russian edition)

    Google Scholar 

  34. Pivovarchik, V. N. Ambarzumyan’s theorem for a Sturm-Liouville boundary value problem on a star-shaped graph. Funct. Anal. Appl., 39: 148–151 (2005)

    Article  MathSciNet  Google Scholar 

  35. Witthaut, D., Salger, T., Kling, S., Grossert, C., Weitz, M. Effective Dirac dynamics of ultracold atoms in bichromatic optical lattices. Phys. Rev. A, 84: 033601 (2011)

    Article  Google Scholar 

  36. Wolf, E. L. Graphene. A new paradigm in condensed matter and device physics. Oxford University Press, Oxford, 2014

    Google Scholar 

  37. Rundell, W., Sacks, P. E. Inverse eigenvalue problem for a simple star graph. Journal of Spectral Theory, 5: 363–380 (2015)

    Article  MathSciNet  Google Scholar 

  38. Shen, C. L. On some inverse spectral problems related to the Ambarzumyan problem and the dual string of the string equation. Inverse Problems, 23: 2417–2436 (2007)

    Article  MathSciNet  Google Scholar 

  39. Shi, Q. C. Some trace formulae for one dimensional Dirac systems. Acta Math. Scientia, 18: 316–321 (1993)

    Google Scholar 

  40. Yang, C. F., Huang, Z. Y. Inverse spectral problems for 2m-dimensional canonical Dirac operators. Inverse Problems, 23: 2565–2574 (2007)

    Article  MathSciNet  Google Scholar 

  41. Yang, C. F., Xu, X. C. Ambarzumyan-type theorems on graphs with loops and double edges. Journal of Mathematical Analysis and Applications, 444: 1348–1358 (2016)

    Article  MathSciNet  Google Scholar 

  42. Yang, C. F., Huang, Z. Y. and Yang, X. P. Ambarzumyan-type theorems for the Sturm-Liouville equation on a graph. Rocky Mountain Journal of Mathematics, 39: 1353–1372 (2009).

    Article  MathSciNet  Google Scholar 

  43. Yang, C. F., Yang, X. P. Some Ambarzumyan-type theorems for Dirac operators. Inverse Problems, 25: 095012 (13pp) (2009)

    Article  MathSciNet  Google Scholar 

  44. Yurko, V. A. Inverse spectral problems for Sturm-Liouville operators on graphs. Inverse Problems, 21: 1075–1086 (2005)

    Article  MathSciNet  Google Scholar 

  45. Yurko, V. A. On Ambarzumyan-type theorems. Applied Mathematics Letters, 26: 506–509 (2013).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-Fu Yang.

Ethics declarations

The authors declare no conflict of interest.

Additional information

The project is supported by the National Natural Science Foundation of China (No. 11871031) and the Natural Science Foundation of the Jiangsu Province of China (No. BK 20201303).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, DJ., Xu, XJ. & Yang, CF. Ambarzumyan’s Theorem for the Dirac Operator on Equilateral Tree Graphs. Acta Math. Appl. Sin. Engl. Ser. 40, 568–576 (2024). https://doi.org/10.1007/s10255-024-1042-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10255-024-1042-6

Keywords

2020 MR Subject Classification

Navigation