Skip to main content
Log in

Contact Extension and Symplectification

  • Published:
Acta Mathematicae Applicatae Sinica, English Series Aims and scope Submit manuscript

Abstract

This paper mainly studies the contact extension of conservative or dissipative systems, including some old and new results for wholeness. Then extension of contact system is corresponding to the symplectification of contact Hamiltonian system. This is a reciprocal process and the relation between symplectic system and contact system has been discussed. We have an interesting discovery that by adding a pure variable p, the slope of the tangent of the orbit, every differential system can be regarded as an independent subsystem of contact Hamiltonian system defined on the projection space of contact phase space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Arnold, V. I. Mathematical Methods of Classical Mechanics. Springer-Verlag, New York, 1978

    Book  Google Scholar 

  2. Bryant, J. The contact transformation groups of the Extended Hamiltonian System. Celest. Mech. Dyn. Astr., 25: 41–49 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bravetti, A., Cruz, H., Tapias, D. Contact Hamiltonian mechanics. Ann. Phys., 376: 17–39 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carathéodory, C. Calculus of Variations and Partial Differential Equations of First Order: Second Edition, Amer. Math. Soc., Providence, RI, 2000. Translated by Robert B. Dean Julius J. Brandstatter, Translating Editor

  5. Eisenhart, L. P. Contact transformations. Ann. Math., 30: 211–249 (1928–1929)

    Article  MathSciNet  MATH  Google Scholar 

  6. Eisenhart, L. P. Invariant theory of homogeneous contact transformations. Ann. Math., 37: 747–765 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  7. Giaquinta, M., Hildebrandt, S. Calculus of Variations II. Springer-Verlag, Berlin Heidelberg, 2004

    Book  MATH  Google Scholar 

  8. Gizatullin, M. Klein’s conjecture for contact automorphisms of the three-dimensional affine space. Mich. Math. J., 56: 89–98 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gray, J. W. Global properties of contact structures. Ann. Math., 69: 421–450 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ince, E. L. Ordinary differential equations. Dover Publications, New York, 1956

    Google Scholar 

  11. Klein, F. Vorlesungen über höhere Geometrie, dritte Auflage, bearbeitet und herausgegeben von W. Blashke, Verlag von Julius Springer, Berlin, 1926. Russian translation 1939. The first lithographic edition, Einleitung in die höhere Geometrie

    Book  Google Scholar 

  12. Liu, Q., Torres, P. J., Chao, W. Contact Hamiltonian dynamics: Variational principles, invariants, completeness and periodic behavior. Ann. Phys., 395: 26–44 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu, Q., Torres, P. J. Orbital dynamics on invariant sets of contact Hamiltonian systems. Discrete Cont. Dyn.-B, 27: 5821–5844 (2022) (2022)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rajeev, S. G. A Hamilton-Jacobi formalism for thermodynamics. Ann. Phys., 323: 2265–2285 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang, K., Wang, L., Yan, J. Implicit variational principle for contact Hamiltonian systems. Nonlinearity, 30: 492–515 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang, K., Wang, L., Yan, J. Variational principle for contact Hamiltonian systems and its applications. J. Math. Pures et Appl., 123: 167–200 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang, K., Wang, L., Yan, J. Aubry-mather theory for contact Hamiltonian systems. Comm. Math. Phys., 366: 981–1023 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang, Y., Yan, J. A variational principle for contact Hamiltonian systems. J. Differential Equations, 267: 4047–4088 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zadra, F., Bravetti, A., Seri, M. Geometric numerical integration of Liénard systems via a contact Hamiltonian approach. Mathematics, 9: 1–26 (2021)

    Article  MATH  Google Scholar 

Download references

Acknowledgments. The authors appreciate the referees and editors for good suggestions to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi-huai Liu.

Ethics declarations

The authors declare no conflict of interest.

Additional information

This paper is supported by the National Natural Science Foundation of China (Nos. 11771105, 12071410), the Natural Science Foundation of Guangxi Province (Nos. 2017GXNSFFA198012) and Guangxi Distinguished Expert Project.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Qh., Xie, A. & Wang, C. Contact Extension and Symplectification. Acta Math. Appl. Sin. Engl. Ser. 39, 962–971 (2023). https://doi.org/10.1007/s10255-023-1093-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10255-023-1093-0

Keywords

2020 MR Subject Classification

Navigation