Skip to main content
Log in

Smooth Solution of Multi-dimensional Nonhomogeneous Conservation Law: Its Formula, and Necessary and Sufficient Blowup Criterion

  • Published:
Acta Mathematicae Applicatae Sinica, English Series Aims and scope Submit manuscript

Abstract

In this paper, we are concerned with the necessary and sufficient condition of the global existence of smooth solutions of the Cauchy problem of the multi-dimensional scalar conservation law with source-term, where the initial data lies in W1,∞(ℝn) ∩ C1(ℝn). We obtain the solution formula for smooth solution, and then apply it to establish and prove the necessary and sufficient condition for the global existence of smooth solution. Moreover, if the smooth solution blows up at a finite time, the exact lifespan of the smooth solution can be obtained. In particular, when the source term vanishes, the corresponding theorem for the homogeneous case is obtained too. Finally, we give two examples as its applications, one for the global existence of the smooth solution and the other one for the blowup of the smooth solutions at any given positive time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alinhac, S. Un phénomne de concentration évanescente pour des flots non-stationnaires incompressibles en dimension deux [Concentration cancellation for incompressible nonstationary flows in dimension two]. Comm. Math. Phys. 127(3): 585–596 (1990)(French)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alinhac, S. Blowup of small data solutions for a class of quasilinear wave equations in two space dimensions. Annals of Mathematics, 1999, 149(1): 97–127

    Article  MathSciNet  MATH  Google Scholar 

  3. Alinhac, S. Blowup of small data solutions for a class of quasilinear wave equations in two space dimensions, ii. Acta Mathematica, 1999, 182(1): 1–23

    Article  MathSciNet  MATH  Google Scholar 

  4. Cao, G.W., Xiang, W., Yang, X.Z. Global structure of admissible solutions of multi-dimensional non-homogeneous scalar conservation law with Riemann-type data. J. diff. equ., 2017, 263(2): 1055–1078

    Article  MathSciNet  MATH  Google Scholar 

  5. Chang, T., Hsiao, L. The Riemann problem and interaction of waves in gas dynamics. NASA STI/Recon Technical Report A, 1989, 90: 44044

    Google Scholar 

  6. Chen, G., Chen, G.Q., Zhu, S.G. Formation of singularities and existence of global continuous solutions for the compressible Euler equations. SIAM Journal on Mathematical Analysis, 2021, 53(6): 6280–6325

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, G.Q., Li, D., Tan, D. Structure of Riemann solutions for 2-dimensional scalar conservation laws. Journal of differential equations, 1996, 127(1): 124–147

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, S.X., Xin, Z.P., Yin, H.C. Formation and construction of shock wave for quasilinear hyperbolic system and its application to inviscid compressible flow. The Institute of Mathematical Sciences at CUHK, 2010, Research Reports: 2000–10(069), 1999

  9. Christodoulou, D. Global solutions of nonlinear hyperbolic equations for small initial data. Communications on Pure and Applied Mathematics, 1986, 39(2): 267–282

    Article  MathSciNet  MATH  Google Scholar 

  10. Christodoulou, D. The formation of shocks in 3-dimensional fluids: Volume 2. Euro. Math. Soc., 2007

  11. Christodoulou, D. The shock development problem. EMS Monographs in Mathematics. European Mathematical Society (EMS), Zürich, 2019

    Book  Google Scholar 

  12. Christodoulou, D., Miao, S. Compressible flow and Euler’s equations. Surveys of Modern Mathematics, 9. International Press, Somerville, MA; Higher Education Press, Beijing, 2014

    MATH  Google Scholar 

  13. Conway, E., Smoller, J. Uniqueness and stability theorem for the generalized solution of the initial-value problem for a class of quasi-linear equations in several space variables. Archive for Rational Mechanics and Analysis, 1967, 23(5): 399–408

    Article  MathSciNet  MATH  Google Scholar 

  14. Holzegel, G., Klainerman, S., Speck, J., Wong, W.W. Small-data shock formation in solutions to 3D quasilinear wave equations: an overview. J. Hyperbolic Differential Equation. 13(1): 1C–105 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hürmander, L. The lifespan of classical solutions of non-linear hyperbolic equations. Pseudo-Differential Operators, 1987: 214–280

  16. John, F. Formation of singularities in one-dimensional nonlinear wave propagation. Communications on Pure and Applied Mathematics, 1974, 27: 377–405

    Article  MathSciNet  MATH  Google Scholar 

  17. Kruzkov, S.N. First order quasilinear equations inseveral independent variables. Sbornik: Mathematics, 1970, 10(2): 217–243

    Article  Google Scholar 

  18. Lax, P.D. Development of singularities of solutions of nonlinear hyperbolic partial differential equations. Journal of Mathematical Physics, 1964, 5(5): 611–613

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, T.T. Global classical solutions for quasilinear hyperbolic systems. Wiley, New York, 1994

    MATH  Google Scholar 

  20. Li, T.T., Zhou, Y., Kong, D.X. Weak linear degeneracy and global classical solutions for general quasilinear hyperbolic systems. Communications in Partial Differential Equations, 1994, 19(7–8): 1263–1317

    MathSciNet  MATH  Google Scholar 

  21. Liu, T.P. Development of singularities in the nonlinear waves for quasi-linear hyperbolic partial differential equations. Journal of Differential Equations, 1979, 33(1): 92–111

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu, T.P. Nonlinear resonance for quasilinear hyperbolic equation. Journal of mathematical physics, 1987, 28(11): 2593–2602

    Article  MathSciNet  MATH  Google Scholar 

  23. Luk, J., Speck, J. Shock formation in solutions to the 2d compressible Euler equations in the presence of non-zero vorticity. Inventiones Mathematicae, 2018, 214(1): 1–169

    Article  MathSciNet  MATH  Google Scholar 

  24. Luk, J., Speck, J. The hidden null structure of the compressible Euler equations and a prelude to applications. J. Hyperbolic Differential Equation, 17(1): 1–60 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Miao, S., Yu, P. On the formation of shocks for quasilinear wave equations. Inventiones Mathematicae, 2017, 207(2): 697–831

    Article  MathSciNet  MATH  Google Scholar 

  26. Shi, B., Wang, W. Existence and blow up of solutions to the 2D burgers equation with supercritical dissipation. Discrete and Continuous Dynamical Systems-B, 2020, 25(3): 1169–1192

    Article  MathSciNet  MATH  Google Scholar 

  27. Tsuji, M., Li, T.T. Globally classical solutions for nonlinear equations of first order. Communications in partial differential equations, 10(12): 1451–1463 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  28. Vol’pert, A. The space BV and quasilinear equations. Maths. USSR Sbornik, 2: 225–267 (1967)

    Article  MATH  Google Scholar 

  29. Yang, X.Z. Multi-Dimensional Riemann problem of scalar conservation law. Acta Mathematica Scientia, 1990, 19(2): 190–200

    Article  MathSciNet  MATH  Google Scholar 

  30. Yang, X.Z., Zhang, T. Global smooth solution of multi-dimensional non-homogeneous conservation laws. Progress in Natural Science, 2004, 14(10): 855–862

    Article  MathSciNet  MATH  Google Scholar 

  31. Yang, T., Zhu, C.J., Zhao, H.J. Global smooth solutions for a class of quasilinear hyperbolic systems with dissipative terms. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 1997, 127(6): 1311–1324

    Article  MathSciNet  MATH  Google Scholar 

  32. Yin, H.C. Formation and construction of a shock wave for 3-d compressible Euler equations with the spherical initial data. Nagoya Mathematical Journal, 2004, 175: 125–164

    Article  MathSciNet  MATH  Google Scholar 

  33. Yin, H.C., Zhu, L. The shock formation and optimal regularities of the resulting shock curves for 1d scalar conservation laws. Nonlinearity, 2022, 35(2): 954–997

    Article  MathSciNet  MATH  Google Scholar 

  34. Yin, H.C., Zhu, L. Formation and construction of a multidimensional shock wave for the firstorder hyperbolic conservation law with smooth initial data. SIAM J. Mathematical Analysis, 2022, 54(2): 2587–2610

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhu, C.J., Zhao, H.J. Existence, uniqueness and stability of solutions for a class of quasilinear wave equations. Chinese Journal of Contemporary Mathematics, 1997, 18(2): 171–184

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-zhou Yang.

Additional information

The research of Gaowei Cao was supported in part by the NSFC (Grant 11701551 and Grant 11971024), and the China Scholarship Council No.202004910200. The research of Hui Kan was supported in part by the NSFC (Grant 11801551). The research of Wei Xiang was supported in part by the Research Grants Council of the HKSAR, China (Project No. CityU 11332916, Project No. CityU 11304817 and Project No. CityU 11303518). The research of X.Z. Yang was supported in part by the NSFC (Grant 11471332).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Gw., Kan, H., Xiang, W. et al. Smooth Solution of Multi-dimensional Nonhomogeneous Conservation Law: Its Formula, and Necessary and Sufficient Blowup Criterion. Acta Math. Appl. Sin. Engl. Ser. 39, 17–27 (2023). https://doi.org/10.1007/s10255-023-1036-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10255-023-1036-9

Keywords

2000 MR Subject Classification

Navigation