Skip to main content
Log in

Incompressible Limit of the Compressible Q-tensor System of Liquid Crystals

  • Published:
Acta Mathematicae Applicatae Sinica, English Series Aims and scope Submit manuscript

Abstract

We study the connection between the compressible Navier-Stokes equations coupled by the Q-tensor equation for liquid crystals with the incompressible system in the periodic case, when the Mach number is low. To be more specific, the convergence of the weak solutions of the compressible nematic liquid crystal model to the incompressible one is proved as the Mach number approaches zero, and we also obtain the similar results in the stochastic setting when the equations are driven by a stochastic force. Our approach is based on the uniform estimates of the weak solutions and the martingale solutions, then we justify the limits using various compactness criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alazard, T. Low Mach number limit of the full Navier-Stokes equations. Arch. Ration. Mech. Anal., 180: 1–73 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bresch, D., Desjardins, B. Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model. Comm. Math. Phys., 238(1–2): 211–223 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bresch, D., Desjardins, B. On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids. J. Math. Pures Appl., 87: 57–90 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Breit, D., Feireisl, E., Hofmanová, M. Incompressible limit for compressible fluids with stochastic forcing. Arch. Ration. Mech. Anal., 222: 895–926 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Desjardins, B., Grenier, E., Lions, P.-L., Masmoudi, N. Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions. J. Math. Pures Appl., (9) 78: 461–471 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Desjardins, B., Grenier, E. Low Mach number limit of viscous compressible flows in the whole space. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 455(1986): 2271–2279 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dou, C., Jiang, S., Ou, Y. Low Mach number limit of full Navier-Stokes equations in a 3D bounded domain. J. Differential Equations, 258: 379–398 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. DE Gennes, P.G., Jacques, P. The Physics of Liquid Crystals, 2nd ed. Clarendon Press, Oxford, 1993

    Google Scholar 

  9. Doi, M., Edwards, S.F. The Theory of Polymer Dynamics. Clarendon Press, Oxford, 1986

    Google Scholar 

  10. Ding, S., Huang, J., Wen, H., Zi, R. Incompressible limit of the compressible nematic liquid crystal flow. J. Funct. Anal., 264: 1711–1756 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Feireisl, E., Novotný, A. The low Mach number limit for the full Navier-Stokes-Fourier system. Arch. Ration. Mech. Anal., 186: 77–107 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jakubowski, A. The almost sure Skorokhod representation for subsequences in nonmetric spaces. Theory Probab. Appl., no. 1, 167–174 (1998).

  13. Lions, J.-L. Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod; Gauthier-Villars, Paris 1969 xx+554 pp.(French)

    MATH  Google Scholar 

  14. Jiang, S., Ju, Q., Li, F. Incompressible limit of the compressible magnetohydrodynamic equations with periodic boundary conditions. Comm. Math. Phys., 297: 371–400 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jiang, S., Ju, Q., Li, F. Low Mach number limit for the multi-dimensional full magnetohydrodynamic equations. Nonlinearity, 25: 1351–1365 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hoff, D. Dynamics of singularity surfaces for compressible, viscous flows in two space dimensions. Comm. Pure Appl. Math., 55: 1365–1407 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hu, X., Wang, D. Low Mach number limit of viscous compressible magnetohydrodynamic flows. SIAM J. Math. Anal., 41: 1272–1294 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Klainerman, S., Majda, A. Compressible and incompressible fluids. Comm. Pure Appl. Math., 35: 629–651 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  19. Klainerman, S., Majda, A. Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Comm. Pure Appl. Math., 34: 481–524 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lin, C-K. On the incompressible limit of the compressible Navier-Stokes equations. Comm. Partial Differential Equations, 20(3–4): 677–707 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lions, P.-L. Mathematical topics in fluid mechanics, Vol. 2, Compressible models. Oxford Lecture Series in Mathematics and its Applications, 10, Oxford Science Publications, the Clarendon Press, Oxford University Press, New York, 1998

    MATH  Google Scholar 

  22. Lions, P.-L., Masmoudi, N. Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl., 77: 585–627 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Masmoudi, N. Examples of singular limits in hydrodynamics. Handbook of differential equations: evolutionary equations, Vol. III, 195–275, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2007 (English summary)

    MATH  Google Scholar 

  24. Masmoudi, N. Incompressible, inviscid limit of the compressible Navier-Stokes system. Ann. Inst. H. Poincaré Anal. Non Linéaire, 18: 199–224 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Qiu, Z., Wang, Y. Martingale solution for stochastic active liquid crystal system. Discrete Contin. Dyn. Syst., to appear

  26. Schochet, S. The mathematical theory of low Mach number flows. M2AN Math. Model. Numer. Anal., 39: 441–458 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, D., Xu, X., Yu, C. Global weak solution for a coupled compressible Navier-Stokes and Q-tensor system. Commun. Math. Sci., 13: 49–82 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, D., Yu, C. Incompressible limit for the compressible flow of liquid crystals. J. Math. Fluid Mech., 16: 771–786 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yang, X. Uniform well-posedness and low Mach number limit to the compressible nematic liquid crystal flows in a bounded domain. Nonlinear Anal., 120: 118–126 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author would like to thank Professor Dehua Wang for his valuable suggestions and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-xuan Wang.

Additional information

The research was supported in part by the NSF grant DMS-1907519.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Yx. Incompressible Limit of the Compressible Q-tensor System of Liquid Crystals. Acta Math. Appl. Sin. Engl. Ser. 39, 179–201 (2023). https://doi.org/10.1007/s10255-023-1033-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10255-023-1033-z

Keywords

2000 MR Subject Classification

Navigation