Skip to main content
Log in

A geometric flow approach for region-based image segmentation-theoretical analysis

  • Published:
Acta Mathematicae Applicatae Sinica, English Series Aims and scope Submit manuscript

Abstract

In this paper, we analyze the well-posedness of an image segmentation model. The main idea of that segmentation model is to minimize one energy functional by evolving a given piecewise constant image towards the image to be segmented. The evolution is controlled by a serial of mappings, which can be represented by B-spline basis functions. The evolution terminates when the energy is below a given threshold. We prove that the correspondence between two images in the segmentation model is an injective and surjective mapping under appropriate conditions. We further prove that the solution of the segmentation model exists using the direct method in the calculus of variations. These results provide the theoretical support for that segmentation model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Buck, R.C. Advanced Calculus. The McGraw-Hill Book Company, New York 1956

    MATH  Google Scholar 

  2. Caselles, V., Catte, F., Coll, T., Dibos, F. A geometric model for active contours in image processing. Numerische Mathematik, 66(1): 1–31 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Caselles, V., Kimmel, R., Sapiro, R. Geodesic active contours. International Journal of Computer Vision, 22: 61–79 (1997)

    Article  MATH  Google Scholar 

  4. Chan, T.F., Sandberg, B.Y., Vese, L.A. Active contours without edges for vector-valued images. Journal of Visual Communication and Image Representation, 11: 130–141 (2000)

    Article  Google Scholar 

  5. Chan, T.F., Vese, L.A. Active contours without edges. IEEE Transactions on Image Processing, 10(2): 266–277 (2001)

    Article  MATH  Google Scholar 

  6. do Carmo, M.P. Differential Geometry of Curves and Surfaces. China Machine Press, Beijing, 2004

    Google Scholar 

  7. Esedoglu, S., Tsai, Y.H. Threshold dynamics for the piecewise constant Mumford-Shah functional. J. Comput. Phys., 211: 367–384 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gibou, F., Fedkiw, R. A fast hybrid k-means level set algorithm for segmentation. In: 4th Annual Hawaii International Conference on Statistics and Mathematics, 2005, 281–291

    Google Scholar 

  9. Jing, Z.C., Li, M. A wavelet based alternative iteration method for the orientation refinement of cryoelectron microscopy 3D reconstruction. Mathematical Modelling and Analysis, 20(3): 396–408 (2015)

    Article  MathSciNet  Google Scholar 

  10. Jing, Z.C., Li, M.G., Wang, C.L. A Nonmonotone Line Search Based Algorithm for Distribution Center Location Selected. Acta Mathematicae Applicatae Sinica (English Series), 3: 699–706 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kass, M., Witkin, A., Terzopoulos, D. Snakes: Active Contour Models. International Journal of Computer Vision, 1(4): 321–331 (1987)

    Article  Google Scholar 

  12. Li, C., Xu, C., Gui, C., Fox, M.D. Level set evolution without re-initialization: a new variational formulation. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, 2005, 430–436

    Google Scholar 

  13. Lie, J., Lysaker, M., Tai, X.C. A variant of the level set method and applications to image segmentation. Mathematics of Computation, 75: 1155–1174 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Linda, G. Shapiro, George, C. Stockman. Computer Vision. Prentice-Hall, Upper Saddle River, New Jersey, 2001

    Google Scholar 

  15. Malladi, R., Sethian, J.A., Vemuri, B.C. Shape modeling with front propagation: A level set approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(2): 158–175 (1995)

    Article  Google Scholar 

  16. Massari, U., Tamanini, I. Regularity properties of optimal segmentations. J. Reine Angew. Math., 420: 61–84 (1991)

    MathSciNet  MATH  Google Scholar 

  17. Mumford, D., Shah, J. Optimal approximations by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics, 42: 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Munkres, J.R. Topology. China Machine Press, 2004

    MATH  Google Scholar 

  19. Song, B., Chan, T. A fast algorithm for level set based optimization. Cam report 02-68, UCLA, 2002

    Google Scholar 

  20. Sumengen, B., Manjunath, B. Graph partitioning active contours (GPAC) for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28: 509–521 (2006)

    Article  Google Scholar 

  21. Vese, L.A., Chanm, T.F. A multiphase level set framework for image segmentation using the Mumford and Shah model. International Journal of Computer Vision, 50: 271–293 (2002)

    Article  MATH  Google Scholar 

  22. Ye, J., Xu, G. A geometric flow approach for region-based image segmentation. IEEE Transactions on Image Processing, 21(12): 4735–4745 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, G.Q. Functional Analysis Lecture. Peking University Press, Beijing, 1997

    Google Scholar 

  24. Ziemer, W.P. Image Processing and Analysis. Society for Industrial and Applied Mathematical, 2005

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu-cui Jing.

Additional information

Project support in part by NSFC grant 61379096 and Chinese-Guangdong’s S & T project (2014A050503004).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, Zc., Ye, J. & Xu, Gl. A geometric flow approach for region-based image segmentation-theoretical analysis. Acta Math. Appl. Sin. Engl. Ser. 34, 65–76 (2018). https://doi.org/10.1007/s10255-018-0723-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10255-018-0723-4

Keywords

2000 MR Subject Classification

Navigation