Skip to main content
Log in

Solving the 2-D elliptic Monge-Ampère equation by a Kansa’s method

  • Published:
Acta Mathematicae Applicatae Sinica, English Series Aims and scope Submit manuscript

Abstract

In this paper, a Kansa’s method is designed to solve numerically the Monge-Ampère equation. The primitive Kansa’s method is a meshfree method which applying the combination of some radial basis functions (such as Hardy’s MQ) to approximate the solution of the linear parabolic, hyperbolic and elliptic problems. But this method is deteriorated when is used to solve nonlinear partial differential equations. We approximate the solution in some local triangular subdomains by using the combination of some cubic polynomials. Then the given problems can be computed in each subdomains independently. We prove the stability and convergence of the new method for the elliptic Monge-Ampère equation. Finally, some numerical experiments are presented to demonstrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barles, G., Souganidis, P.E. Convergence of approximation schemes for fully nonlinear second order equations. Asymptotic Anal., 4: 271–283 (1991)

    MathSciNet  MATH  Google Scholar 

  2. Benamou, J.D., Froese, B.D., Oberman A.M. Two numerical methods for the elliptic Monge-Ampère equation. ESAIM: Math. Model. Numer. Anal., 44: 737–758 (2010)

    Article  MATH  Google Scholar 

  3. Böhmer, K. Numerical Methods for Nonlinear Elliptic Differential Equations: a Synopsis. Oxford University Press, New York, 2010

    Book  MATH  Google Scholar 

  4. Brenner, S.C., Gudi, T., Neilan, M., Sung, L.Y. C 0 penalty methods for the fully nonlinear Monge-Ampère equation. Math. Comput., 80 (276): 1979–1995 (2011)

    Article  MATH  Google Scholar 

  5. Brenner, S.C., Scott, L.R. The Mathematical Theory of Finite Element Methods, 3nd Edition. Springer-Verlag, New York, 2008

    Book  MATH  Google Scholar 

  6. Ciarlet, P.G. The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978

    MATH  Google Scholar 

  7. Dean, E.J., Glowinski, R. An augmented Lagrangian approach to the numerical solution of the Dirichlet problem for the elliptic Monge-Ampère equation in two dimensions. Electron. Trans. Numer. Anal., 22: 71–96 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Dean, E.J., Glowinski, R. Numerical methods for fully nonlinear elliptic equations of the Monge-Ampère type. Comput. Methods Appl. Mech. Engrg, 195: 1344–1386 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dean, E.J., Glowinski, R. On the numerical solution of the elliptic Monge-Ampère equation in dimension two: a leastsquares approach. In: Partial Differential Equations, Comput. Methods Appl. Sci., Vol.16, Springer, Dordrecht, the Netherlands, 2008, 43–63

    Google Scholar 

  10. Dean, E.J., Glowinski, R., Pan, T.-W. Operator-splitting methods and applications to the direct numerical simulation of particulate flow and to the solution of the elliptic Monge-Ampère equation. In: Control and boundary analysis, Lect. Notes Pure Appl. Math., Vol.240, Chapman & Hall/CRC, Boca Raton, USA, 1–27 (2005)

    Google Scholar 

  11. Dennis, J.E., Schnabel, R.B. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. SIAM, Philadelphia, 1996

    Book  MATH  Google Scholar 

  12. Fasshauer, G.E. Meshfree Approximation Methods with MATLAB. World Scientific Publishers, Singapore, 2007

    Book  MATH  Google Scholar 

  13. Fedoseyev, A.I., Friedman, M.J., Kansa, E.J. Continuation for nonlinear elliptic partial differential equations discretized by the multiquadric method. Int. J. Bifurcation and Chaos, 10 (2): 481–492 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feng, X., Neilan, M. Mixed finite element methods for the fully nonlinear Monge-Ampère equation based on the vanishing moment method. SIAM J. Numer. Anal., 47: 1226–1250 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Feng, X., Neilan, M. Analysis of Galerkin methods for the fully nonlinear Monge-Ampère equation. J. Sci. Comput., 47: 303–327 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Froese, B.D., Oberman, A.M. Fast finite difference solvers for singular solutions of the elliptic Monge-Ampère equation. J. Comput. Phys., 230: 818–834 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Froese, B.D., Oberman, A.M. Convergent finite difference solvers for viscosity solutions of the elliptic Monge-Ampère equation in dimensions two and higher. SIAM J. Numer. Anal., 49 (4): 1692–1714 (2012)

    Article  MATH  Google Scholar 

  18. Glowinski, R. Numerical methods for fully nonlinear elliptic equations. In: 6th International Congress on Industrial and Applied Mathematics, ICIAM 07, Invited Lectures, R. Jeltsch and G. Wanner Eds., 2009, 155–192

    Google Scholar 

  19. Glowinski, R., Dean, E.J., Guidoboni, G., Juárez, L.H., Pan, T.-W. Applications of operator-splitting methods to the direct numerical simulation of particulate and free-surface flows and to the numerical solution of the two-dimensional elliptic Monge-Ampère equation. Japan J. Indust. Appl. Math., 25: 1–63 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Haltiner, G.J. Numerical Weather Prediction. Wiley, New York, 1971

    Google Scholar 

  21. Islam, S., Haq, S., Uddin, M. A meshfree interpolation method for the numerical solution of the coupled nonlinear partial differential equations. Engineering Analysis with Boundary Elements, 33: 399–409 (2009)

  22. Kansa E.J. Application of Hardy’s multiquadric interpolation to hydrodynamics, In: Proceedings of the 1986 Annual Simulations Conference, Vol. 4, San Diego, CA, 1986, 111–117

    Google Scholar 

  23. Kansa, E.J. Multiquadrics-a scattered data approximation scheme with applications to computational fluid-dynamics-II. Computers Math. Applic, 19(8/9): 147–161 (1990)

    Article  MATH  Google Scholar 

  24. Kasahara, A. Significance of non-elliptic regions in balanced flows of the tropical atmosphere. Mon. Weather Rev, 110: 1956–1967 (1982)

    Article  Google Scholar 

  25. Kelley, C.T. Solving Nonlinear Equations with Newton’s Method. SIAM, Philadelphia, 2003

    Book  MATH  Google Scholar 

  26. Khattak, A.J., Tirmizi, S.I.A., Islam, S. Application of meshfree collocation method to a class of nonlinear partial differential equations. Engineering Analysis with Boundary Elements, 33: 661–667 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Oberman, A.M. Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian. Discrete Contin. Dyn. Syst. Ser. B, 10: 221–238 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Oliker, V.I., Prussner, L.D. On the numerical solution of the equation ∂2z/∂x22 z/∂y 2 - (∂2z/∂x-y)2 = f and its discretizations, I. Numer. Math., 54: 271–293 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  29. Stojanovic, S.D. Risk premium and fair option prices under stochastic volatility: the hara solution. C. R. Math, 340: 551–556 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Stoker, J.J. Nonlinear Elasticity. Gordon and Breach Science Publishers, New York, 1968

    MATH  Google Scholar 

  31. Wendland, H. Piecewise polynomial, positive definite and compactly supproted radial functions of minimal degree. Adv. Comput. Math., 4: 389–396 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  32. Westcott, B.S. Shaped Reflector Antenna Design. Research Studies Press, New York, 1983

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Li.

Additional information

The first author is supported in part by the National Natural Science Foundations of China (No.11426039, 11571023, 11471329). The second author is partially supported by the National Natural Science Foundation of China (No.11501313), the Natural Science Foundation of Ningxia Province (No.NZ15005), and the Science Research Project of Ningxia Higher Education (No.NGY2016059).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Liu, Zy. Solving the 2-D elliptic Monge-Ampère equation by a Kansa’s method. Acta Math. Appl. Sin. Engl. Ser. 33, 269–276 (2017). https://doi.org/10.1007/s10255-017-0656-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10255-017-0656-3

Keywords

2000 MR Subject Classification

Navigation