Skip to main content
Log in

Global strong solutions of the Cauchy problem for 1D compressible Navier-Stokes equations with density-dependent viscosity

  • Published:
Acta Mathematicae Applicatae Sinica, English Series Aims and scope Submit manuscript

Abstract

We consider the Cauchy problem for one-dimensional compressible isentropic Navier-Stokes equations with density-dependent viscosity μ(ρ) = α, where α > 0 and A > 0. The global existence of strong solutions is obtained, which improves the previous results by enlarging the interval of α. Moreover, our result shows that no vacuum is developed in a finite time provided the initial data does not contain vacuum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chapman, S., Cowling, T.G. The mathematical theory of non-uniform gases. An account of the kinetic theory of viscosity, thermal conduction and diffusion in gases, 3rd ed. prepared in co-operation with D. Burnett. Cambridge University Press, London, 1970

    MATH  Google Scholar 

  2. Hoff, D. Global existence for 1D, compressible, isentropic Navier-Stokes equations with large initial data. Trans. Amer. Math. Soc., 303: 169–181 (1987)

    MathSciNet  MATH  Google Scholar 

  3. Hoff, D. Global solutions of the equations of one-dimensional, compressible flow with large data and forces, and with differing end states. Z. Angew. Math. Phys., 49: 774–785 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hoff, D. Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data. J. Differ. Eqs., 120: 215–254 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hoff, D. Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data. Arch. Rational Mech. Anal., 132: 1–14 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Jiang, S. Global smooth solutions of the equations of a viscous, heat-conducting, one-dimensional gas with density-dependent viscosity. Math. Nachr., 196: 169–183 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Jiang, S., Xin, Z.P., Zhang, P. Global weak solutions to 1D compressible isentropic Navier-Stokes equations with density-dependent viscosity. Methods and Applications of Analysis, 12: 239–252 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kazhikov, A.V., Shelukhin, V.V. Unique global solution with respect to time of initial boundary vlaue problems for one-dimensional equations of aviscous gas. J. Appl. Math. Mech., 41: 273–282 (1977)

    Article  MathSciNet  Google Scholar 

  9. Jiu, Q.S., Wang, Y., Xin, Z.P. Stability of Rarefaction Waves to the 1D Compressible Navier-Stokes Equations with Density-Dependent Viscosity. Communications in Partial Differential Equations, 36: 602–634 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lions, P.L. Mathematical Topics in Fluid Dynamics 2, Compressible Models. Oxford Science Publication, Oxford, 1998

    MATH  Google Scholar 

  11. Liu, T.P., Xin, Z.P., Yang, T. Vacuum states for compressible flow. Discrete Contin. Dynam. Systems, 4: 1–32 (1998)

    MathSciNet  MATH  Google Scholar 

  12. Luo, T., Xin, Z.P., Yang, T. Interface behavior of compressible Navier-Stokes equations with vacuum. SIAM J. Math. Anal., 31: 1175–1191 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Makino, T. On a local existence theorem for the evolution equations of gaseous stars. In: Patterns and wave-qualitative analysis of nonlinear differential equations, ed. by T. Nishida, M. Mimura and H. Fujii, North-Holland, 1986, 459–479

    Chapter  Google Scholar 

  14. Matsumura, A., Nishida, T. The initial value problem for the equations of motion of viscous and heatconductive gases. J. Math. Kyoto Univ., 20: 67–104 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  15. Matsumura, A., Nishida, T. Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids. Commun. Math. Phys., 89: 445–464 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mellet, A., Vasseur, A. Existence and uniqueness of global strong solutions for one-dimensional compressible Navier-Stokes equations. SIAM J. Math. Anal., 39: 1344–1365 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mucha, P.B. Comressible Navier-Stokes system in 1-D. Math. Meth. Appl. Sci., 24: 607–622 (2001)

    Article  MATH  Google Scholar 

  18. Okada, M., Makino, T. Free boundary problem for the equations of spherically symmetrical motion of viscous gas. Japan. J. Appl. Math., 10: 219–235 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Okada, M., Matušü-Nečasová, Š., Makino, T. Free boundary problem for the equation of one-dimensional motion of compressible gas with density-dependent viscosity. Ann. Univ. Ferrara Sez. VII (N.S.), 48: 1–20 (2002)

    MathSciNet  MATH  Google Scholar 

  20. Okada, M. Free boundary problems for the equation of the one-dimensional motion of viscous gas. Japan J. Appl. Math., 6: 161–177 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Qin, X.L., Yao, Z.A., Zhu, C.J. One dimensional compressible Navier-Stokes equations with densitydependent viscosity and free boundaries. Comm. Pure. App. Anal., 7: 373–381 (2008)

    Google Scholar 

  22. Serre, D. Solutions faibles globales des équations de Navier-Stokes pour un fluide compressible. C.R. Acad. Sci. Paris Sér. I Math., 303(13): 639–642 (1986)

    MathSciNet  MATH  Google Scholar 

  23. Serre, D. Sur l’équation monodimensionnelle d’un fluide visqueux, compressible et conducteur de chaleur. C. R. Acad. Sci. Paris Sér. I Math., 303(14): 703–706 (1986)

    MathSciNet  MATH  Google Scholar 

  24. Solonnikov, V.A. Solvability of the initial-boundary value problem for the equations of motion of a viscous compressible fluid. Zap. Nauch. Sem. Leningrad. Otdel. Mat. Inst. Steklov, 197: 128–142 (1976)

    MathSciNet  MATH  Google Scholar 

  25. Wang, S.J., Zhao, J.N. Global existence of solutions for one-dimensional compressible Navier-Stokes equations in the half space. Acta Mathematica Scientia, 30: 1889–1905 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yang, T., Zhu, C.J. Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum. Comm. Math. Phys., 230: 329–363 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yang, T., Yao, Z.A., Zhu, C.J. Compressible Navier-Stokes equations with density-dependent viscosity and vaccum. Comm. Partial Differential Equ., 26: 965–981 (2001)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for the valuable comments and suggestions which improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-quan Liu.

Additional information

The first author is supported by the National Natural Science Foundation of China under Grant No. 11301244, the Foundation of Education Department of Liaoning Province of China under Grant L2013006, and the Doctor Startup Foundation of Liaoning Province of China Grant 20131040. The second author is supported by the National Natural Science Foundation of China under Grant No. 11371297.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Sq., Zhao, Jn. Global strong solutions of the Cauchy problem for 1D compressible Navier-Stokes equations with density-dependent viscosity. Acta Math. Appl. Sin. Engl. Ser. 33, 25–34 (2017). https://doi.org/10.1007/s10255-016-0631-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10255-016-0631-4

Keywords

2000 MR Subject Classification

Navigation