Skip to main content
Log in

A second order nonconforming rectangular finite element method for approximating Maxwell’s equations

  • Published:
Acta Mathematicae Applicatae Sinica, English Series Aims and scope Submit manuscript

Abstract

The main objective of this paper is to present a new rectangular nonconforming finite element scheme with the second order convergence behavior for approximation of Maxwell’s equations. Then the corresponding optimal error estimates are derived. The difficulty in construction of this finite element scheme is how to choose a compatible pair of degrees of freedom and shape function space so as to make the consistency error due to the nonconformity of the element being of order O(h 3), properly one order higher than that of its interpolation error O(h 2) in the broken energy norm, where h is the subdivision parameter tending to zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ciarlet, P.G. Basic Error Estimates for Elliptic Problems. In: Handbook of Numerical Analysis, Vol.2-Finite Element Methods (pt.1), NorthHolland, Amsterdam, 1991

    Google Scholar 

  2. Chen, S.C., Shi, D.Y. Accuracy analysis for Quasi-Wilson element. Acta Math. Sci., 20(1): 44–48 (2000)

    MathSciNet  Google Scholar 

  3. Chen, S.C., Shi, D.Y., Zhao, Y.C. Anisotropic interpolation and quasi-Wilson element for narrow quadrilateral meshes. IMA. J. Numer. Anal., 24(1): 77–95 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Deng, M., Shen, G.S., Yu, P., Deng, J.W. The marine magnetotelluric prospecting technique based on the Maxwell’s theory. Ocean. Technology, 22(2): 44–47 (2003)

    Google Scholar 

  5. Jiang, J.J., Cheng, X.L. A nonconforming element like Wilson’s for second order problems. Math. Numer. Sinica, 14(3): 274–278 (1992)

    MATH  Google Scholar 

  6. Lin, Q., Yan, N.N. Global superconvergence for Maxwell’s equations. Math. Comput., 69(229): 159–176 (1999)

    Article  MathSciNet  Google Scholar 

  7. Lin, J.F., Lin, Q. Global superconvergence of mixed finite element methods for 2-D Maxwell’s equations. J. Comput. Math., 21(5): 637–646 (2003)

    MathSciNet  MATH  Google Scholar 

  8. Lin, Q., Lin, J.F. Finite Element Methods: Accuracy and Improvement. Mathematics Monograph Series 1. Science Press, Beijing, China, 2006

    Google Scholar 

  9. Ledger, P.D., Morgan, K., Hassan, O., Weatherill, N.P. Plane wave H(curl; Ω) conforming finite elements for Maxwell’s equations. Comput. Mech., 31(3): 272–283 (2003)

    MathSciNet  MATH  Google Scholar 

  10. Monk, P. A mixed method for approximating Maxwell’s equations. SIAM J. Numer. Anal., 28(6): 1610–1634 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Monk, P. A comparison of three mixed methods for the time-dependent Maxwell’s equations. SIAM J. Sci. Statist. Comput., 13(5): 1097–1122 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Monk, P. Analysis of a finite element method for Maxwell’s equations. SIAM J. Numer. Anal., 29(3): 714–729 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Monk, P. Superconvergence of finite element approximation to Maxwell’s equations. Numer. Meth. for PDEs., 10(6): 793–812 (1994)

    MathSciNet  MATH  Google Scholar 

  14. Maria, L.M., Jitka, S., Gerald, W., Yousef, Z. On evolution Galerkin methods for the Maxwell’s and the linearized Euler equations. Appl. Math., 49(5): 415–439 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Nedelec, J. Mixed finite elements in R 3. Numer. Math., 35: 315–341 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  16. Robert, L.L., Niel, K.M. A mixed finite element formulation for Maxwell’s equations in the time domain. J. Comput. Phys., 88: 284–304 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. Shi, D.Y., Pei, L.F. Low order Crouzeix-Raviart type nonconforming finite element methods for approximating Maxwell’s equations. Int. J. Numer. Anal. & Model., 5(3): 373–385 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Shi, D.Y., Mao, S.P., Chen, S.C. An anisotropic nonconforming finite element with some superconvergence results. J. Comput. Math., 23(3): 261–274 (2005)

    MathSciNet  MATH  Google Scholar 

  19. Specht, B. Modified shape functions for the three node plate bending element passing the patch-Test. Int. J. Numer. Meth. Engrg., 26(3): 705–715 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shi, Z.C., Chen, S.C. An analysis of a nine degree plate bending element of specht. Acta. Numer. Math., 11(3): 312–318 (1989)

    MathSciNet  MATH  Google Scholar 

  21. Shi, D.Y., Pei, L.F., Chen. S.C. A nonconforming arbitrary quadrilateral finite element method for approximating Maxwell’s equations. Numer. Math. J. Chinese Univ., 16(4): 289–299 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-yang Shi.

Additional information

Supported by the National Natural Science Foundation of China (No. 10971203), and the Doctor Foundation of Henan Institute of Engineering (No. D09008).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Dy., Hao, Xb. A second order nonconforming rectangular finite element method for approximating Maxwell’s equations. Acta Math. Appl. Sin. Engl. Ser. 27, 739–748 (2011). https://doi.org/10.1007/s10255-011-0103-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10255-011-0103-9

Keywords

2000 MR Subject Classification

Navigation