Skip to main content
Log in

Some I-convergent sequence spaces defined by Orlicz functions

  • Published:
Acta Mathematicae Applicatae Sinica, English Series Aims and scope Submit manuscript


In this article we introduce the sequence spaces c I(M), c I0 (M), m I(M) and m I0 (M) using the Orlicz function M. We study some of the properties like solid, symmetric, sequence algebra, etc and prove some inclusion relations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Bhardwaj, V.K., Singh, N. Some sequence spaces defined by Orlicz functions. Demonstratio Math., 33(3): 571–582 (2000)

    MATH  MathSciNet  Google Scholar 

  2. Demirci, K. I-limit superior and limit inferior. Math. Commun., 6: 165–172 (2001)

    MATH  MathSciNet  Google Scholar 

  3. Esi, A., Et, M. Some new sequence spaces defined by a sequence of Orlicz functions. Indian J. Pure Appl. Math., 31(8): 967–972 (2000)

    MATH  MathSciNet  Google Scholar 

  4. Et, M. On Some new Orlicz sequence spaces. J. Analysis, 9: 21–28 (2001)

    MATH  MathSciNet  Google Scholar 

  5. Esi, A. Some new sequence spaces defined by Orlicz functions. Bull. Inst. Math. Acad. Sinica., 27: 71–76 (1999)

    MATH  MathSciNet  Google Scholar 

  6. Kamthan, P.K., Gupta, M. Sequence spaces and Series. Marcel Dekker, New York, 1980.

    Google Scholar 

  7. Korasnoselkii, M.A., Rutitsky, Y.B. Convex functions and Orlicz functions. Groningoen, Netherlands, 1961.

    Google Scholar 

  8. Kostyrko, P., Salat, T., Wilczyński, W. I-convergence. Real Analysis Exchange, 26(2): 669–686 (2000)

    MathSciNet  Google Scholar 

  9. Lindenstrauss, J., Tzafriri, L. On Orlicz sequence spaces. Israel J. Math., 101: 379–390 (1971)

    Article  MathSciNet  Google Scholar 

  10. Maddox, I.J. Elements of Functional Analysis. Cambridge Univ. Press, 1970

  11. Nakano, H. Concave modulars. J. Math Soc. Japan, 5: 29–49 (1953)

    Article  MATH  MathSciNet  Google Scholar 

  12. Parashar, S.D., Choudhary, B. Sequence spaces defined by Orlicz function. Indian J. Pure Appl. Math., 25: 419–428 (1994)

    MATH  MathSciNet  Google Scholar 

  13. Ruckle, W.H. FK spaces in which the sequence of coordinate vectors is bounded. Canad. J. Math., 25: 973–978 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  14. Šalát, T., Tripathy, B.C., Ziman, M. On some properties of I-convergence. Tatra Mt. Math. Publ., 28: 279–286 (2004)

    MATH  MathSciNet  Google Scholar 

  15. Savas, E., Rhoades, B.E. On some new sequence spaces of inveariant means defined by Orlicz functions. Math. Ineq. Appl., 5(2): 271–281 (2002)

    MATH  MathSciNet  Google Scholar 

  16. Tripathy, B.C, Altin, Y., Et, M. Generalized difference sequences spaces on seminormed spaces defined by Orlicz functions. Mathematica Slovaca, 58(3): 315–324 (2008).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Binod Chandra Tripathy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tripathy, B.C., Hazarika, B. Some I-convergent sequence spaces defined by Orlicz functions. Acta Math. Appl. Sin. Engl. Ser. 27, 149–154 (2011).

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI:


2000 MR Subject Classification