Skip to main content
Log in

Profiles of blow-up solutions for the Gross-Pitaevskii equation

  • Published:
Acta Mathematicae Applicatae Sinica, English Series Aims and scope Submit manuscript

Abstract

This paper is concerned with the blow-up solutions of the Cauchy problem for Gross-Pitaevskii equation. In terms of Merle and Raphaël’s arguments as well as Carles’ transformation, the limiting profiles of blow-up solutions are obtained. In addition, the nonexistence of a strong limit at the blow-up time and the existence of L 2 profile outside the blow-up point for the blow-up solutions are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bradley, C.C., Sackett, C.A., Hulet, R.G. Bose-Einstein condensation of lithium: observation of limited condensate number. Phys. Rev. Lett., 78: 985–989 (1997)

    Article  Google Scholar 

  2. Carles, R. Critical nonlinear Schrödinger equations with and without harmonic potential. Math. Mod. Meth. Appl. Sci., 12: 1513–1523 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cazenave, T. Semilinear Schrödinger equations. Courant Lecture Notes in Mathematics, 10, NYU, CIMS, AMS, 2003

  4. Chen, G.G., Zhang, J. Sharp threshold of global existence for nonlinear Gross-Pitaevskii equation in RN. IMA J. Appl. Math., 71: 232–240 (2006)

    Article  MATH  Google Scholar 

  5. Fibich, G., Merle, F., Raphaël, P. Numerical proof of a spectral property related to singularity formulation for the L 2 critical nonlinear Schrödinger equation. Physic D, 220: 1–13 (2006)

    Article  MATH  Google Scholar 

  6. Gross, E.P. Structure of a quantized vortex in boson systems. Nuovo Cimento., 20(3): 454–477 (1961)

    Article  MATH  Google Scholar 

  7. Glassey, R.T. On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations. J. Math. Phys., 18: 1794–1797 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kwong, M.K. Uniqueness of positive solutions of Δuu + u p = 0 in R n. Arch. Rational. Mech. Anal., 105: 243–266 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  9. Li, X.G., Zhang, J. Limit behavior of blow-up solutions for critical nonlinear Schrödinger equation with harmonic potential. Diff. Int. Equations, 19: 761–771 (2006)

    Google Scholar 

  10. Li, X.G., Zhang, J. Rate of L 2-concentration for nonlinear Schrödinger equation with harmonic potential. Acta Mathematica Sinica, Chinese Series, 49: 909–914 (2006)

    MATH  MathSciNet  Google Scholar 

  11. Merle, F., Tsutsumi, Y. L 2 concentration of blow up solutions for the nonlinear Schrödinger equation with critical power nonlinearity. J. Diff. Equations, 84: 205–214 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  12. Merle, F., Raphaël, P. On universality of blow-up profile for L 2 critical nonlinear Schrödinger equation. Invent. Math., 156: 565–672 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Merle, F., Raphaël, P. Blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation. Ann. Math., 16: 157–222 (2005)

    Article  Google Scholar 

  14. Merle, F., Raphaël, P. On a sharp lower bound on the blow-up rate for the L 2-critical nonlinear Schrödinger equation. J. Amer. Math. Soc., 19: 37–90 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Merle, F., Raphaël, P. Profiles and quantization of the blowup mass for critical nonlinear Schrödinger equation. Comm. Math. Phys., 253: 675–672 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Oh, Y.G. Cauchy problem and Ehrenfest’s law of nonlinear Schrödinger equations with potentials. J. Diff. Equations, 81: 255–274 (1989)

    Article  MATH  Google Scholar 

  17. Pitaevskii, L.P. Vortex lines in an imperfect Bose gas. Zh. Eksper. Teor. Fiz., 40: 646–651 (1961)

    Google Scholar 

  18. Shu, J., Zhang, J. Nonlinear Schrödinger equation with harmonic potential. J. Math. Phys., 47: 063503-1–6 (2006)

    Article  MathSciNet  Google Scholar 

  19. Strauss, W.A. Existence of solitary waves in higher dimensions. Comm. Math. Phys., 55: 149–162 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  20. Weinstein, M.I. Nonlinear Schrödinger equations and sharp interpolation estimates. Comm. Math. Phys., 87: 567–576 (1983)

    Article  MATH  Google Scholar 

  21. Wadati, M., Tsurumi, T. Critical number of atoms for the magnetically trapped Bose-Einstein condensate with negative s-wave scattering length. Phys. Lett. A, 247: 287–293 (1998)

    Article  Google Scholar 

  22. Zhang, J. Stability of attractive Bose-Einstein condensate. J. Statist. Phys., 101: 731–746 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Zhang, J. Sharp conditions of global existence for nonlinear Schrödinger and Klein-Gordon equations. Nonlinear Anal., 48: 191–207 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  24. Zhang, J. Sharp threshold for blowup and global existence in nonlinear Schrödinger equation under a harmonic potential. Comm. Partial Diff. Equations, 30: 1429–1443 (2005)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-hui Zhu.

Additional information

Supported by the National Natural Science Foundation of China (No. 10771151, No. 10747148).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Sh., Zhang, J. Profiles of blow-up solutions for the Gross-Pitaevskii equation. Acta Math. Appl. Sin. Engl. Ser. 26, 597–606 (2010). https://doi.org/10.1007/s10255-010-0027-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10255-010-0027-9

Keywords

2000 MR Subject Classification

Navigation