Skip to main content

Advertisement

SpringerLink
Symmetric power functoriality for holomorphic modular forms
Download PDF
Download PDF
  • Open Access
  • Published: 15 October 2021

Symmetric power functoriality for holomorphic modular forms

  • James Newton1 nAff2 &
  • Jack A. Thorne3 

Publications mathématiques de l'IHÉS volume 134, pages 1–116 (2021)Cite this article

  • 964 Accesses

  • 16 Citations

  • Metrics details

Abstract

Let \(f\) be a cuspidal Hecke eigenform of level 1. We prove the automorphy of the symmetric power lifting \(\operatorname{Sym}^{n} f\) for every \(n \geq 1\).

We establish the same result for a more general class of cuspidal Hecke eigenforms, including all those associated to semistable elliptic curves over \(\mathbf{Q}\).

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. J. Arthur and L. Clozel, Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula, Annals of Mathematics Studies, vol. 120, Princeton University Press, Princeton, 1989.

    MATH  Google Scholar 

  2. P. B. Allen, Deformations of polarized automorphic Galois representations and adjoint Selmer groups, Duke Math. J., 165 (2016), 2407–2460.

    MathSciNet  MATH  Google Scholar 

  3. P. B. Allen, J. Newton and J. A. Thorne, Automorphy lifting for residually reducible \(l\)-adic Galois representations, II, Compos. Math., 156 (2020), 2399–2422.

    MathSciNet  MATH  Google Scholar 

  4. C. Anastassiades and J. A. Thorne, Raising the level of automorphic representations of \(\mathrm{GL}_{2n}\) of unitary type, J. Inst. Math. Jussieu (2021). https://doi.org/10.1017/S1474748020000602. In press.

    Article  Google Scholar 

  5. K. Buzzard and F. Calegari, The 2-adic eigencurve is proper, arXiv Mathematics e-prints (2005), arXiv:math/0503362.

  6. J. Bellaïche and G. Chenevier, Families of Galois representations and Selmer groups, Astérisque, 324 (2009), xii+314.

  7. J. Bellaïche and G. Chenevier, The sign of Galois representations attached to automorphic forms for unitary groups, Compos. Math., 147 (2011), 1337–1352.

    MathSciNet  MATH  Google Scholar 

  8. L. Berger, Équations différentielles \(p\)-adiques et \((\phi ,N)\)-modules filtrés, Astérisque, 319 (2008), 13–38. Représentations \(p\)-adiques de groupes \(p\)-adiques. I. Représentations galoisiennes et \((\phi ,\Gamma )\)-modules.

    MATH  Google Scholar 

  9. J. Bergdall, Paraboline variation over \(p\)-adic families of \((\phi , \Gamma )\)-modules, Compos. Math., 153 (2017), 132–174.

    MathSciNet  MATH  Google Scholar 

  10. R. Bellovin and T. Gee, \(G\)-valued local deformation rings and global lifts, Algebra Number Theory, 13 (2019), 333–378.

    MathSciNet  MATH  Google Scholar 

  11. S. Bosch, U. Güntzer and R. Remmert, Non-archimedean Analysis: A Systematic Approach to Rigid Analytic Geometry, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 261, Springer, Berlin, 1984.

    MATH  Google Scholar 

  12. C. Breuil, E. Hellmann and B. Schraen, Une interprétation modulaire de la variété trianguline, Math. Ann., 367 (2017), 1587–1645.

    MathSciNet  MATH  Google Scholar 

  13. C. J. Bushnell and P. C. Kutzko, Smooth representations of reductive \(p\)-adic groups: structure theory via types, Proc. Lond. Math. Soc. (3), 77 (1998), 582–634.

    MathSciNet  MATH  Google Scholar 

  14. K. Buzzard and L. J. P. Kilford, The 2-adic eigencurve at the boundary of weight space, Compos. Math., 141 (2005), 605–619.

    MathSciNet  MATH  Google Scholar 

  15. A. Bucur and K. S. Kedlaya, An application of the effective Sato-Tate conjecture, Frobenius distributions: Lang–Trotter and Sato–Tate conjectures, in Contemp. Math., vol. 663, pp. 45–56, Am. Math. Soc., Providence, 2016.

    Google Scholar 

  16. T. Barnet-Lamb, T. Gee and D. Geraghty, The Sato–Tate conjecture for Hilbert modular forms, J. Am. Math. Soc., 24 (2011), 411–469.

    MathSciNet  MATH  Google Scholar 

  17. T. Barnet-Lamb, T. Gee, D. Geraghty and R. Taylor, Potential automorphy and change of weight, Ann. Math. (2), 179 (2014), 501–609.

    MathSciNet  MATH  Google Scholar 

  18. T. Barnet-Lamb, D. Geraghty, M. Harris and R. Taylor, A family of Calabi–Yau varieties and potential automorphy II, Publ. Res. Inst. Math. Sci., 47 (2011), 29–98.

    MathSciNet  MATH  Google Scholar 

  19. C. Breuil, Vers le socle localement analytique pour \({ {\mathrm{GL}}}_{n}\) II, Math. Ann., 361 (2015), 741–785.

    MathSciNet  MATH  Google Scholar 

  20. C. Breuil, Socle localement analytique I, Ann. Inst. Fourier (Grenoble), 66 (2016), 633–685.

    MathSciNet  MATH  Google Scholar 

  21. C. Breuil and P. Schneider, First steps towards \(p\)-adic Langlands functoriality, J. Reine Angew. Math., 610 (2007), 149–180.

    MathSciNet  MATH  Google Scholar 

  22. K. Buzzard, On \(p\)-adic families of automorphic forms, in Modular Curves and Abelian Varieties, Progr. Math., vol. 224, pp. 23–44, Birkhäuser, Basel, 2004.

    Google Scholar 

  23. K. Buzzard, Eigenvarieties, \(L\)-functions and Galois representations, in London Math. Soc. Lecture Note Ser., vol. 320, pp. 59–120, Cambridge University Press, Cambridge, 2007.

    Google Scholar 

  24. I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive \({\mathfrak{p}}\)-adic groups. I, Ann. Sci. Éc. Norm. Supér. (4), 10 (1977), 441–472.

    MathSciNet  MATH  Google Scholar 

  25. A. Caraiani, Local-global compatibility and the action of monodromy on nearby cycles, Duke Math. J., 161 (2012), 2311–2413.

    MathSciNet  MATH  Google Scholar 

  26. A. Caraiani, Monodromy and local-global compatibility for \(l=p\), Algebra Number Theory, 8 (2014), 1597–1646.

    MathSciNet  MATH  Google Scholar 

  27. A. Caraiani, M. Emerton, T. Gee, D. Geraghty, V. Paškūnas and S. Woo Shin, Patching and the \(p\)-adic local Langlands correspondence, Camb. J. Math., 4 (2016), 197–287.

    MathSciNet  MATH  Google Scholar 

  28. C. Chevalley, Deux théorèmes d’arithmétique, J. Math. Soc. Jpn., 3 (1951), 36–44.

    MATH  Google Scholar 

  29. G. Chenevier, Familles \(p\)-adiques de formes automorphes pour \({{\mathrm{GL}}}_{n}\), J. Reine Angew. Math., 570 (2004), 143–217.

    MathSciNet  MATH  Google Scholar 

  30. G. Chenevier, Une correspondance de Jacquet-Langlands \(p\)-adique, Duke Math. J., 126 (2005), 161–194.

    MathSciNet  MATH  Google Scholar 

  31. G. Chenevier, On the infinite fern of Galois representations of unitary type, Ann. Sci. Éc. Norm. Supér. (4), 44 (2011), 963–1019.

    MathSciNet  MATH  Google Scholar 

  32. G. Chenevier, The \(p\)-adic analytic space of pseudocharacters of a profinite group and pseudorepresentations over arbitrary rings, in Automorphic Forms and Galois Representations, Vol. 1, London Math. Soc. Lecture Note Ser., vol. 414, pp. 221–285, Cambridge University Press, Cambridge, 2014.

    MATH  Google Scholar 

  33. L. Clozel, M. Harris and R. Taylor, Automorphy for some \(l\)-adic lifts of automorphic mod \(l\) Galois representations, Publ. Math. Inst. Hautes Études Sci., 108 (2008), 1–181, With Appendix A, summarizing unpublished work of Russ Mann, and Appendix B by Marie-France Vignéras.

    MathSciNet  MATH  Google Scholar 

  34. L. Clozel, Changement de base pour les représentations tempérées des groupes réductifs réels, Ann. Sci. Éc. Norm. Supér. (4), 15 (1982), 45–115.

    MATH  Google Scholar 

  35. L. Clozel, The fundamental lemma for stable base change, Duke Math. J., 61 (1990), 255–302.

    MathSciNet  MATH  Google Scholar 

  36. L. Clozel, Motifs et formes automorphes: applications du principe de fonctorialité, automorphic forms, in Shimura Varieties, and \(L\)-Functions, Vol. I, Perspect. Math., vol. 10, Ann Arbor, MI, 1988, pp. 77–159, Academic Press, Boston, 1990.

    Google Scholar 

  37. L. Clozel, Purity reigns supreme, Int. Math. Res. Not., 2 (2013), 328–346.

    MathSciNet  MATH  Google Scholar 

  38. R. F. Coleman, Classical and overconvergent modular forms, Invent. Math., 124 (1996), 215–241.

    MathSciNet  MATH  Google Scholar 

  39. R. F. Coleman, Classical and overconvergent modular forms of higher level, J. Théor. Nr. Bordx., 9 (1997), 395–403.

    MathSciNet  MATH  Google Scholar 

  40. P. Colmez, Représentations triangulines de dimension 2, Astérisque, 319 (2008), 213–258. Représentations \(p\)-adiques de groupes \(p\)-adiques. I. Représentations galoisiennes et \((\phi ,\Gamma )\)-modules.

    MathSciNet  MATH  Google Scholar 

  41. B. Conrad, Irreducible components of rigid spaces, Ann. Inst. Fourier (Grenoble), 49 (1999), 473–541.

    MathSciNet  MATH  Google Scholar 

  42. B. Conrad, Relative ampleness in rigid geometry, Ann. Inst. Fourier (Grenoble), 56 (2006), 1049–1126.

    MathSciNet  MATH  Google Scholar 

  43. L. Clozel and J. A. Thorne, Level-raising and symmetric power functoriality, I, Compos. Math., 150 (2014), 729–748.

    MathSciNet  MATH  Google Scholar 

  44. L. Clozel and J. A. Thorne, Level raising and symmetric power functoriality, II, Ann. Math. (2), 181 (2015), 303–359.

    MathSciNet  MATH  Google Scholar 

  45. L. Clozel and J. A. Thorne, Level-raising and symmetric power functoriality, III, Duke Math. J., 166 (2017), 325–402.

    MathSciNet  MATH  Google Scholar 

  46. F. Diamond and J. Im, Modular forms and modular curves, in Seminar on Fermat’s Last Theorem, CMS Conf. Proc., vol. 17, Toronto, ON, 1993–1994, pp. 39–133, Am. Math. Soc., Providence, 1995.

    Google Scholar 

  47. F. Diamond, On congruence modules associated to \(\Lambda \)-adic forms, Compos. Math., 71 (1989), 49–83.

    MathSciNet  MATH  Google Scholar 

  48. L. Dieulefait, Automorphy of \({{\mathrm{Symm}}}^{5}({ {\mathrm{GL}}}(2))\) and base change, J. Math. Pures Appl. (9), 104 (2015), 619–656.

    MathSciNet  MATH  Google Scholar 

  49. P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. Math. (2), 103 (1976), 103–161.

    MathSciNet  MATH  Google Scholar 

  50. O. Dudas and G. Malle, Modular irreducibility of cuspidal unipotent characters, Invent. Math., 211 (2018), 579–589.

    MathSciNet  MATH  Google Scholar 

  51. N. Dummigan, P. Martin and M. Watkins, Euler factors and local root numbers for symmetric powers of elliptic curves, Pure Appl. Math. Q., 5 (2009), 1311–1341. Special Issue: in honor of John Tate. Part 1

    MathSciNet  MATH  Google Scholar 

  52. F. Diamond and R. Taylor, Nonoptimal levels of mod \(l\) modular representations, Invent. Math., 115 (1994), 435–462.

    MathSciNet  MATH  Google Scholar 

  53. B. Edixhoven, The weight in Serre’s conjectures on modular forms, Invent. Math., 109 (1992), 563–594.

    MathSciNet  MATH  Google Scholar 

  54. M. Emerton, Jacquet modules of locally analytic representations of \(p\)-adic reductive groups. I. Construction and first properties, Ann. Sci. Éc. Norm. Supér. (4), 39 (2006), 775–839.

    MathSciNet  MATH  Google Scholar 

  55. M. Emerton, On the interpolation of systems of eigenvalues attached to automorphic Hecke eigenforms, Invent. Math., 164 (2006), 1–84.

    MathSciNet  MATH  Google Scholar 

  56. J. Fresnel and M. van der Put, Rigid Analytic Geometry and Its Applications, Progress in Mathematics, vol. 218, Birkhäuser Boston, Inc., Boston, 2004.

    MATH  Google Scholar 

  57. A. Grothendieck and J. A. Dieudonné, Éléments de géométrie algébrique. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 166, Springer, Berlin, 1971.

    MATH  Google Scholar 

  58. M. Geck, Irreducible Brauer characters of the 3-dimensional special unitary groups in nondefining characteristic, Commun. Algebra, 18 (1990), 563–584.

    MathSciNet  MATH  Google Scholar 

  59. T. Gee, Automorphic lifts of prescribed types, Math. Ann., 350 (2011), 107–144.

    MathSciNet  MATH  Google Scholar 

  60. D. Geraghty, Modularity lifting theorems for ordinary Galois representations, Math. Ann., 373 (2019), 1341–1427.

    MathSciNet  MATH  Google Scholar 

  61. W. T. Gan, B. H. Gross and D. Prasad, Symplectic local root numbers, central critical \(L\) values, and restriction problems in the representation theory of classical groups, Astérisque, 346 (2012), 1–109. Sur les conjectures de Gross et Prasad. I.

    MathSciNet  MATH  Google Scholar 

  62. S. Gelbart and H. Jacquet, A relation between automorphic representations of \({ {\mathrm{GL}}}(2)\) and \({{\mathrm{GL}}}(3)\), Ann. Sci. Éc. Norm. Supér. (4), 11 (1978), 471–542.

    MathSciNet  MATH  Google Scholar 

  63. T. C. Hales, A simple definition of transfer factors for unramified groups, in Representation Theory of Groups and Algebras, Contemp. Math., vol. 145, pp. 109–134, Am. Math. Soc., Providence, 1993.

    MATH  Google Scholar 

  64. G. Henniart, Correspondance de Langlands–Kazhdan explicite dans le cas non ramifié, Math. Nachr., 158 (1992), 7–26.

    MathSciNet  MATH  Google Scholar 

  65. G. Henniart, Une preuve simple des conjectures de Langlands pour \({ {\mathrm{GL}}}(n)\) sur un corps \(p\)-adique, Invent. Math., 139 (2000), 439–455.

    MathSciNet  MATH  Google Scholar 

  66. K. Hiraga, On functoriality of Zelevinski involutions, Compos. Math., 140 (2004), 1625–1656.

    MathSciNet  MATH  Google Scholar 

  67. E. Hellmann and B. Schraen, Density of potentially crystalline representations of fixed weight, Compos. Math., 152 (2016), 1609–1647.

    MathSciNet  MATH  Google Scholar 

  68. M. Harris and R. Taylor, The Geometry and Cohomology of Some Simple Shimura Varieties, Annals of Mathematics Studies, vol. 151, Princeton University Press, Princeton, 2001, With an appendix by Vladimir G. Berkovich.

    MATH  Google Scholar 

  69. H. Jacquet and J. A. Shalika, On Euler products and the classification of automorphic forms. II, Am. J. Math., 103 (1981), 777–815.

    MathSciNet  MATH  Google Scholar 

  70. T. Kaletha, Endoscopic character identities for depth-zero supercuspidal \(L\)-packets, Duke Math. J., 158 (2011), 161–224.

    MathSciNet  MATH  Google Scholar 

  71. T. Kaletha, Rigid inner forms of real and \(p\)-adic groups, Ann. Math. (2), 184 (2016), 559–632.

    MathSciNet  MATH  Google Scholar 

  72. T. Kaletha, Global rigid inner forms and multiplicities of discrete automorphic representations, Invent. Math., 213 (2018), 271–369.

    MathSciNet  MATH  Google Scholar 

  73. H. H. Kim, Functoriality for the exterior square of \({{\mathrm{GL}}}_{4}\) and the symmetric fourth of \({{\mathrm{GL}}}_{2}\), J. Am. Math. Soc., 16 (2003), 139–183, With Appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and Peter Sarnak.

    Google Scholar 

  74. M. Kisin, Overconvergent modular forms and the Fontaine–Mazur conjecture, Invent. Math., 153 (2003), 373–454.

    MathSciNet  MATH  Google Scholar 

  75. M. Kisin, Potentially semi-stable deformation rings, J. Am. Math. Soc., 21 (2008), 513–546.

    MathSciNet  MATH  Google Scholar 

  76. M. Kisin, Moduli of finite flat group schemes, and modularity, Ann. Math. (2), 170 (2009), 1085–1180.

    MathSciNet  MATH  Google Scholar 

  77. U. Köpf, Über eigentliche Familien algebraischer Varietäten über affinoiden Räumen, Schr. Math. Inst. Univ. Münster, vol. 2, 1974, Heft 7, iv+72.

    MATH  Google Scholar 

  78. K. S. Kedlaya, J. Pottharst and L. Xiao, Cohomology of arithmetic families of \((\varphi ,\Gamma )\)-modules, J. Am. Math. Soc., 27 (2014), 1043–1115.

    MathSciNet  MATH  Google Scholar 

  79. R. E. Kottwitz and D. Shelstad, Foundations of twisted endoscopy, Astérisque, 255 (1999), vi+190,

  80. H. H. Kim and F. Shahidi, Functorial products for \({{\mathrm{GL}}}_{2}\times {{\mathrm{GL}}}_{3}\) and the symmetric cube for \({ {\mathrm{GL}}}_{2}\), Ann. Math. (2), 155 (2002), 837–893, With an appendix by Colin J. Bushnell and Guy Henniart.

    MathSciNet  Google Scholar 

  81. C. B. Khare and J. A. Thorne, Potential automorphy and the Leopoldt conjecture, Am. J. Math., 139 (2017), 1205–1273.

    MathSciNet  MATH  Google Scholar 

  82. D. Kazhdan and Y. Varshavsky, On endoscopic transfer of Deligne–Lusztig functions, Duke Math. J., 161 (2012), 675–732.

    MathSciNet  MATH  Google Scholar 

  83. C. Khare and J.-P. Wintenberger, Serre’s modularity conjecture. I, Invent. Math., 178 (2009), 485–504.

    MathSciNet  MATH  Google Scholar 

  84. J.-P. Labesse, Changement de base CM et séries discrètes, in On the stabilization of the trace formula, Stab. Trace Formula Shimura Var. Arith. Appl., vol. 1, pp. 429–470, Int. Press, Somerville, 2011.

    Google Scholar 

  85. R. P. Langlands, in Problems in the Theory of Automorphic Forms, Lectures in Modern Analysis and Applications, III, Lecture Notes in Math., vol. 170, pp. 18–61, 1970.

    Google Scholar 

  86. R. Langlands, On the classification of irreducible representations of real algebraic groups, in Representation Theory and Harmonic Analysis on Semisimple Lie Groups, Math. Surveys Monogr., vol. 31, pp. 101–170, Am. Math. Soc., Providence, 1989.

    Google Scholar 

  87. G. Laumon and B.C. Ngô, Le lemme fondamental pour les groupes unitaires, Ann. Math. (2), 168 (2008), 477–573.

    MathSciNet  MATH  Google Scholar 

  88. D. Loeffler, Overconvergent algebraic automorphic forms, Proc. Lond. Math. Soc. (3), 102 (2011), 193–228.

    MathSciNet  MATH  Google Scholar 

  89. R. P. Langlands and D. Shelstad, On the definition of transfer factors, Math. Ann., 278 (1987), 219–271.

    MathSciNet  MATH  Google Scholar 

  90. J. Lust and S. Stevens, On depth zero L-packets for classical groups, Proc. Lond. Math. Soc. (3), 121 (2020), 1083–1120.

    MathSciNet  MATH  Google Scholar 

  91. G. Lusztig, On the finiteness of the number of unipotent classes, Invent. Math., 34 (1976), 201–213.

    MathSciNet  MATH  Google Scholar 

  92. G. Lusztig, Irreducible representations of finite classical groups, Invent. Math., 43 (1977), 125–175.

    MathSciNet  MATH  Google Scholar 

  93. R. Liu, D. Wan and L. Xiao, The eigencurve over the boundary of weight space, Duke Math. J., 166 (2017), 1739–1787.

    MathSciNet  MATH  Google Scholar 

  94. C. Maire, On the \(\mathbf {Z}_{l}\)-rank of abelian extensions with restricted ramification, J. Number Theory, 92 (2002), 376–404.

    MathSciNet  MATH  Google Scholar 

  95. B. Mazur, An “infinite fern” in the universal deformation space of Galois representations, Collect. Math., 48 (1997), 155–193.

    MathSciNet  MATH  Google Scholar 

  96. C. Mœglin, Classification et changement de base pour les séries discrètes des groupes unitaires \(p\)-adiques, Pac. J. Math., 233 (2007), 159–204.

    MATH  Google Scholar 

  97. C. Mœglin, Paquets stables des séries discrètes accessibles par endoscopie tordue; leur paramètre de Langlands, Automorphic forms and related geometry: assessing the legacy of I. I. Piatetski-Shapiro, in Contemp. Math., vol. 614, pp. 295–336, Am. Math. Soc., Providence, 2014.

    Google Scholar 

  98. L. Morris, Level zero \({\mathbf{G}}\)-types, Compos. Math., 118 (1999), 135–157.

    MathSciNet  Google Scholar 

  99. S. Morel, On the Cohomology of Certain Noncompact Shimura Varieties, vol. 173, Princeton University Press, Princeton, 2010, with an appendix by Robert Kottwitz (English).

    MATH  Google Scholar 

  100. A. Moy and G. Prasad, Jacquet functors and unrefined minimal \(K\)-types, Comment. Math. Helv., 71 (1996), 98–121.

    MathSciNet  MATH  Google Scholar 

  101. V. Kumar Murty, Explicit formulae and the Lang–Trotter conjecture, Rocky Mt. J. Math., 15 (1985), 535–551, Number theory (Winnipeg, Man., 1983).

    MathSciNet  MATH  Google Scholar 

  102. C. Mœglin and J.-L. Waldspurger, Le spectre résiduel de \({{\mathrm{GL}}}(n)\), Ann. Sci. Éc. Norm. Supér. (4), 22 (1989), 605–674.

    MATH  Google Scholar 

  103. K. Nakamura, Deformations of trianguline \(B\)-pairs and Zariski density of two dimensional crystalline representations, J. Math. Sci. Univ. Tokyo, 20 (2013), 461–568.

    MathSciNet  MATH  Google Scholar 

  104. J. Newton and J. A. Thorne, Symmetric power functoriality for holomorphic modular forms, II, Publ. Math. IHES (2021). https://doi.org/10.1007/s10240-021-00126-4.

    Article  Google Scholar 

  105. J. Newton and J. A. Thorne, Adjoint Selmer groups of automorphic Galois representations of unitary type, J. Eur. Math. Soc. (2020), in press, arXiv:1912.11265.

  106. S. Orlik and M. Strauch, On Jordan–Hölder series of some locally analytic representations, J. Am. Math. Soc., 28 (2015), 99–157.

    MATH  Google Scholar 

  107. V. Pilloni, Overconvergent modular forms, Ann. Inst. Fourier (Grenoble), 63 (2013), 219–239.

    MathSciNet  MATH  Google Scholar 

  108. K. A. Ribet, Congruence relations between modular forms, in Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983), pp. 503–514, PWN, Warsaw, 1984.

    Google Scholar 

  109. F. Rodier, Représentations de \({{\mathrm{GL}}}(n,\,k)\) où \(k\) est un corps \(p\)-adique, in Bourbaki Seminar, Vol. 1981/1982, Astérisque, vol. 92, pp. 201–218, Soc. Math. France, Paris, 1982.

    Google Scholar 

  110. J. D. Rogawski, Automorphic Representations of Unitary Groups in Three Variables, Annals of Mathematics Studies, vol. 123, Princeton University Press, Princeton, 1990.

    MATH  Google Scholar 

  111. J. Rouse and J. Thorner, The explicit Sato–Tate conjecture and densities pertaining to Lehmer-type questions, Trans. Am. Math. Soc., 369 (2017), 3575–3604.

    MathSciNet  MATH  Google Scholar 

  112. S. Sen, Lie algebras of Galois groups arising from Hodge–Tate modules, Ann. Math. (2), 97 (1973), 160–170.

    MathSciNet  MATH  Google Scholar 

  113. S. Woo Shin, Galois representations arising from some compact Shimura varieties, Ann. Math. (2), 173 (2011), 1645–1741.

    MathSciNet  MATH  Google Scholar 

  114. J. Shotton, The Breuil–Mézard conjecture when \(l\neq p\), Duke Math. J., 167 (2018), 603–678.

    MathSciNet  MATH  Google Scholar 

  115. C. Sorensen, A note on Jacquet functors and ordinary parts, Math. Scand., 121 (2017), 311–319.

    MathSciNet  MATH  Google Scholar 

  116. O. Taïbi, Eigenvarieties for classical groups and complex conjugations in Galois representations, Math. Res. Lett., 23 (2016), 1167–1220.

    MathSciNet  MATH  Google Scholar 

  117. R. Taylor, Automorphy for some \(l\)-adic lifts of automorphic mod \(l\) Galois representations. II, Publ. Math., 108 (2008), 183–239.

    MathSciNet  MATH  Google Scholar 

  118. J. Thorne, On the automorphy of \(l\)-adic Galois representations with small residual image, J. Inst. Math. Jussieu, 11 (2012), 855–920, With an appendix by Robert Guralnick, Florian Herzig, Richard Taylor and Thorne.

    MathSciNet  MATH  Google Scholar 

  119. J. A. Thorne, Raising the level for \({{\mathrm{GL}}}_{n}\), Forum Math. Sigma, 2 (2014), e16.

    MATH  Google Scholar 

  120. J. Thorner, The error term in the Sato–Tate conjecture, Arch. Math. (Basel), 103 (2014), 147–156.

    MathSciNet  MATH  Google Scholar 

  121. J. A. Thorne, Automorphy lifting for residually reducible \(l\)-adic Galois representations, J. Am. Math. Soc., 28 (2015), 785–870.

    MathSciNet  MATH  Google Scholar 

  122. J. A. Thorne, Automorphy of some residually dihedral Galois representations, Math. Ann., 364 (2016), 589–648.

    MathSciNet  MATH  Google Scholar 

  123. R. Taylor and T. Yoshida, Compatibility of local and global Langlands correspondences, J. Am. Math. Soc., 20 (2007), 467–493 (electronic).

    MathSciNet  MATH  Google Scholar 

  124. M.-F. Vignéras, Induced \(R\)-representations of \(p\)-adic reductive groups, Sel. Math. New Ser., 4 (1998), 549–623.

    MathSciNet  MATH  Google Scholar 

  125. M.-F. Vignéras, Correspondance de Langlands semi-simple pour \({{\mathrm{GL}}}(n,F)\) modulo \({l}\not = p\), Invent. Math., 144 (2001), 177–223.

    MathSciNet  MATH  Google Scholar 

  126. J.-L. Waldspurger, La formule de Plancherel pour les groupes \(p\)-adiques (d’après Harish-Chandra), J. Inst. Math. Jussieu, 2 (2003), 235–333.

    MathSciNet  MATH  Google Scholar 

  127. T. Weston, Unobstructed modular deformation problems, Am. J. Math., 126 (2004), 1237–1252.

    MathSciNet  MATH  Google Scholar 

  128. A. V. Zelevinsky, Induced representations of reductive \({\mathfrak{p}}\)-adic groups. Ann. Sci. Éc. Norm. Supér. (4), 13 (1980), 165–210.

    MATH  Google Scholar 

Download references

Author information

Author notes
  1. James Newton

    Present address: Mathematical Institute, Woodstock Road, Oxford, OX2 6GG, UK

Authors and Affiliations

  1. Department of Mathematics, King’s College London, Strand, London, WC2R 2LS, UK

    James Newton

  2. Department of Pure Mathematics and Mathematical Statistics, Wilberforce Road, Cambridge, CB3 0WB, UK

    Jack A. Thorne

Authors
  1. James Newton
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Jack A. Thorne
    View author publications

    You can also search for this author in PubMed Google Scholar

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Newton, J., Thorne, J.A. Symmetric power functoriality for holomorphic modular forms. Publ.math.IHES 134, 1–116 (2021). https://doi.org/10.1007/s10240-021-00127-3

Download citation

  • Received: 17 July 2020

  • Revised: 22 September 2021

  • Accepted: 25 September 2021

  • Published: 15 October 2021

  • Issue Date: December 2021

  • DOI: https://doi.org/10.1007/s10240-021-00127-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.