Skip to main content

Advertisement

SpringerLink
  • Publications mathématiques de l'IHÉS
  • Journal Aims and Scope
  • Submit to this journal
Stability conditions in families
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Bridgeland stability on blow ups and counterexamples

16 October 2018

Cristian Martinez & Benjamin Schmidt

Stable maps in higher dimensions

13 June 2018

Ruadhaí Dervan & Julius Ross

The nef cone of the moduli space of sheaves and strong Bogomolov inequalities

18 April 2018

Izzet Coskun & Jack Huizenga

Birational geometry of moduli spaces of stable objects on Enriques surfaces

13 February 2020

Thorsten Beckmann

Sheaves of maximal intersection and multiplicities of stable log maps

28 June 2021

Jinwon Choi, Michel van Garrel, … Nobuyoshi Takahashi

Cohomology bounds and Chern class inequalities for stable sheaves on a smooth projective variety

12 August 2022

Tohru Nakashima

On properness of K-moduli spaces and optimal degenerations of Fano varieties

28 July 2021

Harold Blum, Daniel Halpern-Leistner, … Chenyang Xu

K-stability and birational models of moduli of quartic K3 surfaces

27 November 2022

Kenneth Ascher, Kristin DeVleming & Yuchen Liu

Hodge conjecture for the moduli space of semi-stable sheaves over a nodal curve

31 May 2022

Ananyo Dan & Inder Kaur

Download PDF
  • Open Access
  • Published: 17 May 2021

Stability conditions in families

  • Arend Bayer1,
  • Martí Lahoz2 nAff3,
  • Emanuele Macrì4 nAff5,
  • Howard Nuer4 nAff6,
  • Alexander Perry7 nAff8 &
  • …
  • Paolo Stellari9 

Publications mathématiques de l'IHÉS volume 133, pages 157–325 (2021)Cite this article

  • 1199 Accesses

  • 13 Citations

  • Metrics details

Abstract

We develop a theory of Bridgeland stability conditions and moduli spaces of semistable objects for a family of varieties. Our approach is based on and generalizes previous work by Abramovich–Polishchuk, Kuznetsov, Lieblich, and Piyaratne–Toda. Our notion includes openness of stability, semistable reduction, a support property uniformly across the family, and boundedness of semistable objects. We show that such a structure exists whenever stability conditions are known to exist on the fibers.

Our main application is the generalization of Mukai’s theory for moduli spaces of semistable sheaves on K3 surfaces to moduli spaces of Bridgeland semistable objects in the Kuznetsov component associated to a cubic fourfold. This leads to the extension of theorems by Addington–Thomas and Huybrechts on the derived category of special cubic fourfolds, to a new proof of the integral Hodge conjecture, and to the construction of an infinite series of unirational locally complete families of polarized hyperkähler manifolds of K3 type.

Other applications include the deformation-invariance of Donaldson–Thomas invariants counting Bridgeland stable objects on Calabi–Yau threefolds, and a method for constructing stability conditions on threefolds via degeneration.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. N. Addington, On two rationality conjectures for cubic fourfolds, Math. Res. Lett., 23 (2016), 1–13, arXiv:1405.4902.

    Article  MathSciNet  MATH  Google Scholar 

  2. B. Antieau and E. Elmanto, Descent for semiorthogonal decompositions, Adv. Math., 380, 107600 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  3. M. F. Atiyah and F. Hirzebruch, Vector Bundles and Homogeneous Spaces, Proc. Sympos. Pure Math., Vol. III, Am. Math. Soc., Providence, 1961.

    Book  MATH  Google Scholar 

  4. J. Alper, D. Halpern-Leistner and J. Heinloth, Existence of moduli spaces for algebraic stacks, 2018, arXiv:1812.01128.

  5. J. Alper, Good moduli spaces for Artin stacks, Ann. Inst. Fourier (Grenoble), 63 (2013), 2349–2402, arXiv:0804.2242.

    Article  MathSciNet  MATH  Google Scholar 

  6. V. Ancona, Vanishing and nonvanishing theorems for numerically effective line bundles on complex spaces, Ann. Mat. Pura Appl. (4), 149 (1987), 153–164.

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Abramovich and A. Polishchuk, Sheaves of \(t\)-structures and valuative criteria for stable complexes, J. Reine Angew. Math., 590 (2006), 89–130, arXiv:math/0309435.

    MathSciNet  MATH  Google Scholar 

  8. N. Addington and R. Thomas, Hodge theory and derived categories of cubic fourfolds, Duke Math. J., 163 (2014), 1885–1927, arXiv:1211.3758.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Bayer, A short proof of the deformation property of Bridgeland stability conditions, Math. Ann., 375 (2019), 1597–1613, arXiv:1606.02169.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. A. Beĭlinson, J. Bernstein and P. Deligne, Faisceaux pervers, in Analysis and Topology on Singular Spaces, I, Astérisque, vol. 100, Luminy, 1981, pp. 5–171, Soc. Math. France, Paris, 1982.

    Google Scholar 

  11. A. Bayer, A. Craw and Z. Zhang, Nef divisors for moduli spaces of complexes with compact support, Sel. Math. New Ser., 23 (2017), 1507–1561, arXiv:1602.00863.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Beauville and R. Donagi, La variété des droites d’une hypersurface cubique de dimension 4, C. R. Acad. Sci., Sér. 1 Math., 301 (1985), 703–706.

    MATH  Google Scholar 

  13. A. Beauville, Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differ. Geom., 18 (1984), 755–782, 1983.

    MATH  Google Scholar 

  14. K. Behrend, Donaldson-Thomas type invariants via microlocal geometry, Ann. Math. (2), 170 (2009), 1307–1338, arXiv:math/0507523.

    Article  MathSciNet  MATH  Google Scholar 

  15. K. Behrend and B. Fantechi, The intrinsic normal cone, Invent. Math., 128 (1997), 45–88, arXiv:alg-geom/9601010.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Bayer, B. Hassett and Y. Tschinkel, Mori cones of holomorphic symplectic varieties of \(K3\) type, Ann. Sci. Éc. Norm. Supér., 48 (2015), 941–950, arXiv:1307.2291.

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Bayer, M. Lahoz, E. Macrì and P. Stellari, Stability conditions on Kuznetsov components, 2017, Appendix about the Torelli theorem for cubic fourfolds by A. Bayer, M. Lahoz, E. Macrì, P. Stellari, and X. Zhao, arXiv:1703.10839.

  18. A. Bayer and E. Macrì, The space of stability conditions on the local projective plane, Duke Math. J., 160 (2011), 263–322, arXiv:0912.0043.

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Bayer and E. Macrì, MMP for moduli of sheaves on K3s via wall-crossing: nef and movable cones, Lagrangian fibrations, Invent. Math., 198 (2014), 505–590, arXiv:1301.6968.

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Bayer and E. Macrì, Projectivity and birational geometry of Bridgeland moduli spaces, J. Am. Math. Soc., 27 (2014), 707–752, arXiv:1203.4613.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Bayer, E. Macrì and P. Stellari, The space of stability conditions on abelian threefolds, and on some Calabi-Yau threefolds, Invent. Math., 206 (2016), 869–933, arXiv:1410.1585.

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Bernardara, E. Macrì, B. Schmidt and X. Zhao, Bridgeland stability conditions on Fano threefolds, Épij. Geom. Algébr., 1 (2017), 2, arXiv:1607.08199.

    MathSciNet  MATH  Google Scholar 

  23. A. Bayer, E. Macrì and Y. Toda, Bridgeland stability conditions on threefolds I: Bogomolov-Gieseker type inequalities, J. Algebraic Geom., 23 (2014), 117–163, arXiv:1103.5010.

    Article  MathSciNet  MATH  Google Scholar 

  24. F. A. Bogomolov, Holomorphic tensors and vector bundles on projective manifolds, Izv. Akad. Nauk SSSR, Ser. Mat., 42 (1978), 1227–1287, 1439.

    MathSciNet  Google Scholar 

  25. P. Belmans, S. Okawa and A. T. Ricolfi, Moduli spaces of semiorthogonal decompositions in families, 2020, arXiv:2002.03303.

  26. T. Bridgeland, Equivalences of triangulated categories and Fourier-Mukai transforms, Bull. Lond. Math. Soc., 31 (1999), 25–34, arXiv:math/9809114.

    Article  MathSciNet  MATH  Google Scholar 

  27. T. Bridgeland, Stability conditions on triangulated categories, Ann. Math. (2), 166 (2007), 317–345, arXiv:math/0212237.

    Article  MathSciNet  MATH  Google Scholar 

  28. T. Bridgeland, Stability conditions on \(K3\) surfaces, Duke Math. J., 141 (2008), 241–291, arXiv:math/0307164.

    Article  MathSciNet  MATH  Google Scholar 

  29. D. Ben-Zvi, J. Francis and D. Nadler, Integral transforms and Drinfeld centers in derived algebraic geometry, J. Am. Math. Soc., 23 (2010), 909–966, arXiv:0805.0157.

    Article  MathSciNet  MATH  Google Scholar 

  30. E. Cattani, P. Deligne and A. Kaplan, On the locus of Hodge classes, J. Am. Math. Soc., 8 (1995), 483–506.

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Conte and J. P. Murre, The Hodge conjecture for fourfolds admitting a covering by rational curves, Math. Ann., 238 (1978), 79–88.

    Article  MathSciNet  MATH  Google Scholar 

  32. O. Debarre, A. Iliev and L. Manivel, Special prime Fano fourfolds of degree 10 and index 2, in Recent Advances in Algebraic Geometry, London Math. Soc. Lecture Note Ser., vol. 417, pp. 123–155, Cambridge University Press, Cambridge, 2015, arXiv:1302.1398.

    Chapter  Google Scholar 

  33. A. J. de Jong, Smoothness, semi-stability and alterations, Publ. Math. Inst. Hautes Études Sci., 83 (1996), 51–93.

    Article  MathSciNet  MATH  Google Scholar 

  34. O. Debarre and A. Kuznetsov, Gushel-Mukai varieties: classification and birationalities, Algebr. Geom., 5 (2018), 15–76, arXiv:1510.05448.

    MathSciNet  MATH  Google Scholar 

  35. O. Debarre and A. Kuznetsov, Gushel-Mukai varieties: linear spaces and periods, Kyoto J. Math., 59 (2019), 897–953, arXiv:1605.05648.

    Article  MathSciNet  MATH  Google Scholar 

  36. O. Debarre and E. Macrì, On the period map for polarized hyperkähler fourfolds, Int. Math. Res. Not., 22 (2019), 6887–6923, arXiv:1704.01439.

    Article  MATH  Google Scholar 

  37. M. R. Douglas, Dirichlet branes, homological mirror symmetry, and stability, in Proceedings of the International Congress of Mathematicians, Vol. III, Beijing, 2002, pp. 395–408, Higher Ed. Press, Beijing, 2002, arXiv:math/0207021.

    Google Scholar 

  38. O. Debarre and C. Voisin, Hyper-Kähler fourfolds and Grassmann geometry, J. Reine Angew. Math., 649 (2010), 63–87, arXiv:0904.3974.

    MathSciNet  MATH  Google Scholar 

  39. B. Fantechi and M. Manetti, On the \(T^{1}\)-lifting theorem, J. Algebraic Geom., 8 (1999), 31–39.

    MathSciNet  MATH  Google Scholar 

  40. W. Fulton, Intersection Theory, 2nd ed., Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics, vol. 2, Springer, Berlin, 1998.

    Book  MATH  Google Scholar 

  41. D. Gieseker, On a theorem of Bogomolov on Chern classes of stable bundles, Am. J. Math., 101 (1979), 77–85.

    Article  MathSciNet  MATH  Google Scholar 

  42. D. Gaitsgory and N. Rozenblyum, A Study in Derived Algebraic Geometry. Vol. I. Correspondences and Duality, Mathematical Surveys and Monographs, vol. 221, Am. Math. Soc., Providence, 2017.

    Book  MATH  Google Scholar 

  43. A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Publ. Math. Inst. Hautes Études Sci., 28 (1966), 255.

    MATH  Google Scholar 

  44. B. Hassett, Special cubic fourfolds, Compos. Math., 120 (2000), 1–23.

    Article  MathSciNet  MATH  Google Scholar 

  45. D. Huybrechts and M. Lehn, The Geometry of Moduli Spaces of Sheaves, 2nd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2010.

    Book  MATH  Google Scholar 

  46. D. Halpern-Leistner, On the structure of instability in moduli theory, 2014, arXiv:1411.0627.

  47. D. Huybrechts, E. Macrì and P. Stellari, Derived equivalences of \(K3\) surfaces and orientation, Duke Math. J., 149 (2009), 461–507, arXiv:0710.1645.

    Article  MathSciNet  MATH  Google Scholar 

  48. D. Happel, I. Reiten and S. O. Smalø, Tilting in abelian categories and quasitilted algebras, Mem. Am. Math. Soc., 120 (1996), viii+88

  49. D. Huybrechts and P. Stellari, Proof of Căldăraru’s conjecture. Appendix to: “Moduli spaces of twisted sheaves on a projective variety” by K. Yoshioka, in Moduli Spaces and Arithmetic Geometry, Adv. Stud. Pure Math., vol. 45, pp. 31–42, Math. Soc. Japan, Tokyo, 2006, arXiv:math/0411541.

    Chapter  Google Scholar 

  50. D. Huybrechts and R. P. Thomas, Deformation-obstruction theory for complexes via Atiyah and Kodaira-Spencer classes, Math. Ann., 346 (2010), 545–569, arXiv:0805.3527.

    Article  MathSciNet  MATH  Google Scholar 

  51. D. Huybrechts, Birational symplectic manifolds and their deformations, J. Differ. Geom., 45 (1997), 488–513, arXiv:alg-geom/9601015.

    Article  MathSciNet  MATH  Google Scholar 

  52. D. Huybrechts, Fourier-Mukai Transforms in Algebraic Geometry, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, Oxford, 2006.

    Book  MATH  Google Scholar 

  53. D. Huybrechts, The K3 category of a cubic fourfold, Compos. Math., 153 (2017), 586–620, arXiv:1505.01775.

    Article  MathSciNet  MATH  Google Scholar 

  54. D. Huybrechts, Hodge theory of cubic fourfolds, their Fano varieties, and associated K3 categories, in Birational Geometry of Hypersurfaces, pp. 165–198, Springer, Berlin, 2019, arXiv:1811.02876.

    Chapter  MATH  Google Scholar 

  55. A. Iliev and L. Manivel, Fano manifolds of degree ten and EPW sextics, Ann. Sci. Éc. Norm. Supér. (4), 44 (2011), 393–426, arXiv:0907.2781.

    Article  MathSciNet  MATH  Google Scholar 

  56. M. Inaba, Smoothness of the moduli space of complexes of coherent sheaves on an abelian or a projective \(K3\) surface, Adv. Math., 227 (2011), 1399–1412, arXiv:1002.0379.

    Article  MathSciNet  MATH  Google Scholar 

  57. J. Dominic and Y. Song, A theory of generalized Donaldson-Thomas invariants, Mem. Am. Math. Soc., 217 (2012), iv+199, arXiv:0810.5645.

  58. Y. Kawamata, Unobstructed deformations. A remark on a paper of Z. Ran: “Deformations of manifolds with torsion or negative canonical bundle” [J. Algebraic Geom. 1 (1992), no. 2, 279–291; MR1144440 (93e:14015)], J. Algebraic Geom., 1 (1992), 183–190,

    MathSciNet  Google Scholar 

  59. D. Kaledin, M. Lehn and C. Sorger, Singular symplectic moduli spaces, Invent. Math., 164 (2006), 591–614, arXiv:math/0504202.

    Article  MathSciNet  MATH  Google Scholar 

  60. J. Kollár and S. Mori, Birational Geometry of Algebraic Varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998, With the collaboration of, Clemens, C. H. and Corti, A., Translated from the 1998 Japanese original.

    Book  MATH  Google Scholar 

  61. A. Kuznetsov and D. Markushevich, Symplectic structures on moduli spaces of sheaves via the Atiyah class, J. Geom. Phys., 59 (2009), 843–860, arXiv:math/0703264.

    Article  MathSciNet  MATH  Google Scholar 

  62. N. Koseki, Stability conditions on product threefolds of projective spaces and Abelian varieties, Bull. Lond. Math. Soc., 50 (2018), 229–244, arXiv:1703.07042.

    Article  MathSciNet  MATH  Google Scholar 

  63. N. Koseki, Stability conditions on threefolds with nef tangent bundles, Adv. Math., 372 (2020), 28, Id/No 107316, arXiv:1811.03267.

    Article  MathSciNet  MATH  Google Scholar 

  64. A. Kuznetsov and A. Perry, Derived categories of Gushel-Mukai varieties, Compos. Math., 154 (2018), 1362–1406, arXiv:1605.06568.

    Article  MathSciNet  MATH  Google Scholar 

  65. A. Kuznetsov and A. Perry, Categorical joins, J. Am. Math. Soc., 34 (2021), 505–564, arXiv:1804.00144.

    Article  MathSciNet  Google Scholar 

  66. M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, 2008, arXiv:0811.2435.

  67. A. Kuznetsov, Derived categories of quadric fibrations and intersections of quadrics, Adv. Math., 218 (2008), 1340–1369, arXiv:math/0510670.

    Article  MathSciNet  MATH  Google Scholar 

  68. A. Kuznetsov, Derived categories of Fano threefolds, Proc. Steklov Inst. Math., 264 (2009), 110–122, arXiv:0809.0225.

    Article  MathSciNet  MATH  Google Scholar 

  69. A. Kuznetsov, Derived categories of cubic fourfolds, in Cohomological and Geometric Approaches to Rationality Problems, Progr. Math., vol. 282, pp. 219–243, Birkhäuser, Boston, 2010, arXiv:0808.3351.

    Chapter  Google Scholar 

  70. A. Kuznetsov, Base change for semiorthogonal decompositions, Compos. Math., 147 (2011), 852–876, arXiv:0711.1734.

    Article  MathSciNet  MATH  Google Scholar 

  71. A. Kuznetsov, Calabi-Yau and fractional Calabi-Yau categories, J. Reine Angew. Math., 753 (2019), 239–267, arXiv:1509.07657.

    Article  MathSciNet  MATH  Google Scholar 

  72. A. Langer, Semistable sheaves in positive characteristic, Ann. Math. (2), 159 (2004), 251–276.

    Article  MathSciNet  MATH  Google Scholar 

  73. A. Langer, Bogomolov’s inequality for Higgs sheaves in positive characteristic, Invent. Math., 199 (2015), 889–920.

    Article  MathSciNet  MATH  Google Scholar 

  74. R. Laza, The moduli space of cubic fourfolds via the period map, Ann. Math. (2), 172 (2010), 673–711.

    Article  MathSciNet  MATH  Google Scholar 

  75. C. Li, On stability conditions for the quintic threefold, Invent. Math., 218 (2019), 301–340, arXiv:1810.03434.

    Article  MathSciNet  MATH  Google Scholar 

  76. C. Li, Stability conditions on Fano threefolds of Picard number 1, J. Eur. Math. Soc., 21 (2019), 709–726, arXiv:1510.04089.

    Article  MathSciNet  MATH  Google Scholar 

  77. M. Lieblich, Moduli of complexes on a proper morphism, J. Algebraic Geom., 15 (2006), 175–206, arXiv:math/0502198.

    Article  MathSciNet  MATH  Google Scholar 

  78. M. Lieblich, Remarks on the stack of coherent algebras, Int. Math. Res. Not., 2006 (2006), 75273, arXiv:math/0603034.

    MathSciNet  MATH  Google Scholar 

  79. M. Lahoz, M. Lehn, E. Macrì and P. Stellari, Generalized twisted cubics on a cubic fourfold as a moduli space of stable objects, J. Math. Pures Appl., 9 (2018), 85–117, arXiv:1609.04573.

    Article  MathSciNet  MATH  Google Scholar 

  80. C. Lehn, M. Lehn, C. Sorger and D. van Straten, Twisted cubics on cubic fourfolds, J. Reine Angew. Math., 731 (2017), 87–128, arXiv:1305.0178.

    MathSciNet  MATH  Google Scholar 

  81. E. Looijenga, The period map for cubic fourfolds, Invent. Math., 177 (2009), 213–233, arXiv:0705.0951.

    Article  MathSciNet  MATH  Google Scholar 

  82. C. Li, L. Pertusi and X. Zhao, Twisted cubics on cubic fourfolds and stability conditions, 2018, arXiv:1802.01134.

  83. C. Li, L. Pertusi and X. Zhao, Elliptic quintics on cubic fourfolds, O’Grady 10, and Lagrangian fibrations, 2020, arXiv:2007.14108.

  84. J. Lurie, Higher Topos Theory, Annals of Mathematics Studies, vol. 170, Princeton University Press, Princeton, 2009.

    Book  MATH  Google Scholar 

  85. J. Lurie, Higher algebra. 2017, http://www.math.harvard.edu/~lurie/.

  86. J. Lurie, Spectral Algebraic Geometry, 2018, http://www.math.harvard.edu/~lurie/.

    Google Scholar 

  87. E. Macrì, A generalized Bogomolov-Gieseker inequality for the three-dimensional projective space, Algebra Number Theory, 8 (2014), 173–190, arXiv:1207.4980.

    Article  MathSciNet  MATH  Google Scholar 

  88. E. Markman, A survey of Torelli and monodromy results for holomorphic-symplectic varieties, in Complex and Differential Geometry, Springer Proc. Math., vol. 8, pp. 257–322, Springer, Heidelberg, 2011, arXiv:1101.4606.

    Chapter  MATH  Google Scholar 

  89. G. Mongardi and J. C. Ottem, Curve classes on irreducible holomorphic symplectic varieties, Commun. Contemp. Math., 22 (2020), 1950078, arXiv:1805.12019.

    Article  MathSciNet  MATH  Google Scholar 

  90. G. Mongardi, A note on the Kähler and Mori cones of hyperkähler manifolds, Asian J. Math., 19 (2015), 583–591, arXiv:1307.0393.

    Article  MathSciNet  MATH  Google Scholar 

  91. R. Moschetti, The derived category of a non generic cubic fourfold containing a plane, Math. Res. Lett., 25 (2018), 1525–1545, arXiv:1607.06392.

    Article  MathSciNet  MATH  Google Scholar 

  92. A. Maciocia and D. Piyaratne, Fourier-Mukai transforms and Bridgeland stability conditions on Abelian threefolds II, Int. J. Math., 27 (2016), 1650007, arXiv:1310.0299.

    Article  MathSciNet  MATH  Google Scholar 

  93. E. Macrì and P. Stellari, Lectures on non-commutative K3 surfaces, Bridgeland stability, and moduli spaces, in Birational Geometry of Hypersurfaces, pp. 199–265, Springer, Berlin, 2019, arXiv:1807.06169.

    Chapter  Google Scholar 

  94. C. Martinez and B. Schmidt, Bridgeland stability on blow ups and counterexamples, Math. Z., 292 (2019), 1495–1510, arXiv:1708.08567.

    Article  MathSciNet  MATH  Google Scholar 

  95. S. Mukai, Symplectic structure of the moduli space of sheaves on an abelian or \(K3\) surface, Invent. Math., 77 (1984), 101–116.

    Article  MathSciNet  MATH  Google Scholar 

  96. S. Mukai, On the moduli space of bundles on \(K3\) surfaces. I, in Vector Bundles on Algebraic Varieties, Tata Inst. Fund. Res. Stud. Math., vol. 11, Bombay, 1984, pp. 341–413, Tata Inst. Fund. Res, Bombay, 1987.

    Google Scholar 

  97. A. Neeman, The Grothendieck duality theorem via Bousfield’s techniques and Brown representability, J. Am. Math. Soc., 9 (1996), 205–236, arXiv:alg-geom/9412022.

    Article  MathSciNet  MATH  Google Scholar 

  98. K. G. O’Grady, The weight-two Hodge structure of moduli spaces of sheaves on a \(K3\) surface, J. Algebraic Geom., 6 (1997), 599–644, arXiv:alg-geom/9510001.

    MathSciNet  MATH  Google Scholar 

  99. G. Oberdieck, D. Piyaratne and Y. Toda, Donaldson-Thomas invariants of abelian threefolds and Bridgeland stability conditions, 2018, arXiv:1808.02735.

  100. D. Orlov, Equivalences of derived categories and \(K3\) surfaces, J. Math. Sci. (N.Y.), 84 (1997), 1361–1381, Algebraic geometry, 7, arXiv:alg-geom/9606006.

    Article  MathSciNet  MATH  Google Scholar 

  101. D. Orlov, Triangulated categories of singularities, and equivalences between Landau-Ginzburg models, Mat. Sb., 197 (2006), 117–132, arXiv:math/0503630.

    MathSciNet  MATH  Google Scholar 

  102. G. Ouchi, Lagrangian embeddings of cubic fourfolds containing a plane, Compos. Math., 153 (2017), 947–972, arXiv:1407.7265.

    Article  MathSciNet  MATH  Google Scholar 

  103. A. Perry, Noncommutative homological projective duality, Adv. Math., 350 (2019), 877–972, arXiv:1804.00132.

    Article  MathSciNet  MATH  Google Scholar 

  104. A. Perry, The integral Hodge conjecture for two-dimensional Calabi-Yau categories, 2020, arXiv:2004.03163.

  105. D. Piyaratne, Stability conditions, Bogomolov-Gieseker type inequalities and Fano 3-folds, 2017, arXiv:1705.04011.

  106. A. Polishchuk, Constant families of \(t\)-structures on derived categories of coherent sheaves, Mosc. Math. J., 7 (2007), 109–134, 167, arXiv:math/0606013.

    Article  MathSciNet  MATH  Google Scholar 

  107. A. Perry, L. Pertusi and X. Zhao, Stability conditions and moduli spaces for Kuznetsov components of Gushel-Mukai varieties, 2019, arXiv:1912.06935.

  108. D. Piyaratne and Y. Toda, Moduli of Bridgeland semistable objects on 3-folds and Donaldson–Thomas invariants, J. Reine Angew. Math., 747 (2019), 175–219, arXiv:1504.01177.

    Article  MathSciNet  MATH  Google Scholar 

  109. M. Reid, Bogomolov’s theorem \(c_{1}^{2}\leq 4c_{2}\), in Proceedings of the International Symposium on Algebraic Geometry, Kyoto Univ., Kyoto, 1977, pp. 623–642, Kinokuniya Book Store, Tokyo, 1978.

    Google Scholar 

  110. B. Schmidt, A generalized Bogomolov-Gieseker inequality for the smooth quadric threefold, Bull. Lond. Math. Soc., 46 (2014), 915–923, arXiv:1309.4265.

    Article  MathSciNet  MATH  Google Scholar 

  111. B. Schmidt, Counterexample to the generalized Bogomolov-Gieseker inequality for threefolds, Int. Math. Res. Not., 8 (2017), 2562–2566, arXiv:1602.05055.

    MathSciNet  MATH  Google Scholar 

  112. C. T. Simpson, Moduli of representations of the fundamental group of a smooth projective variety. I, Publ. Math. Inst. Hautes Études Sci., 79 (1994), 47–129.

    Article  MathSciNet  MATH  Google Scholar 

  113. P. Sosna, Stability conditions under change of base field, Math. Nachr., 285 (2012), 364–376, arXiv:1004.4835.

    Article  MathSciNet  MATH  Google Scholar 

  114. The Stacks Project Authors. Stacks project, 2021, Available at http://stacks.math.columbia.edu.

  115. R. Thomas, A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on \(K3\) fibrations, J. Differ. Geom., 54 (2000), 367–438, arXiv:math/9806111.

    Article  MathSciNet  MATH  Google Scholar 

  116. Y. Toda, Moduli stacks and invariants of semistable objects on \(K3\) surfaces, Adv. Math., 217 (2008), 2736–2781, arXiv:math.AG/0703590.

    Article  MathSciNet  MATH  Google Scholar 

  117. R. W. Thomason and T. Trobaugh, Higher algebraic \(K\)-theory of schemes and of derived categories, in The Grothendieck Festschrift, Vol. III, Progr. Math., vol. 88, pp. 247–435, Birkhäuser, Boston, 1990.

    Chapter  Google Scholar 

  118. C. Voisin, Some aspects of the Hodge conjecture, Jpn. J. Math., 2 (2007), 261–296.

    Article  MathSciNet  MATH  Google Scholar 

  119. C. Voisin, Hodge loci, in Handbook of Moduli. Vol. III, Adv. Lect. Math. (ALM), vol. 26, pp. 507–546, Int. Press, Somerville, 2013.

    Google Scholar 

  120. C. Voisin, Hyper-Kähler compactification of the intermediate Jacobian fibration of a cubic fourfold: The twisted case, in Local and Global Methods in Algebraic Geometry, Contemp. Math., vol. 712, pp. 341–355, Am. Math. Soc., Providence, 2018, arXiv:1611.06679.

    Chapter  Google Scholar 

  121. K. Yoshioka, Some notes on the moduli of stable sheaves on elliptic surfaces, Nagoya Math. J., 154 (1999), 73–102, arXiv:alg-geom/9705007.

    Article  MathSciNet  MATH  Google Scholar 

  122. K. Yoshioka, Moduli spaces of stable sheaves on abelian surfaces, Math. Ann., 321 (2001), 817–884, arXiv:math/0009001.

    Article  MathSciNet  MATH  Google Scholar 

  123. S. Zucker, The Hodge conjecture for cubic fourfolds, Compos. Math., 34 (1977), 199–209.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Author notes
  1. Martí Lahoz

    Present address: Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via de les Corts Catalanes, 585, 08007, Barcelona, Spain

  2. Emanuele Macrì

    Present address: Université Paris-Saclay, CNRS, Laboratoire de Mathématiques d’Orsay, Rue Michel Magat, Bât. 307, 91405, Orsay, France

  3. Howard Nuer

    Present address: Department of Mathematics, Technion, Israel Institute of Technology, Amado 914, Haifa, 32000, Israel

  4. Alexander Perry

    Present address: Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, MI, 48109, USA

Authors and Affiliations

  1. School of Mathematics and Maxwell Institute, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK

    Arend Bayer

  2. Université Paris Diderot – Paris 7, Bâtiment Sophie Germain, Case 7012, 75205, Paris Cedex 13, France

    Martí Lahoz

  3. Department of Mathematics, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA

    Emanuele Macrì & Howard Nuer

  4. Department of Mathematics, Columbia University, 2990 Broadway, New York, NY, 10027, USA

    Alexander Perry

  5. Dipartimento di Matematica “F. Enriques”, Università degli Studi di Milano, Via Cesare Saldini 50, 20133, Milano, Italy

    Paolo Stellari

Authors
  1. Arend Bayer
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Martí Lahoz
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Emanuele Macrì
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Howard Nuer
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Alexander Perry
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Paolo Stellari
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Arend Bayer.

Additional information

A. B. was supported by the ERC Starting Grant ERC-2013-StG-337039-WallXBirGeom, by the ERC Consolidator Grant ERC-2018-CoG-819864-WallCrossAG, and by the NSF Grant DMS-1440140 while the author was in residence at the MSRI in Berkeley, during the Spring 2019. M. L. was supported by a Ramón y Cajal fellowship and partially by the Spanish MINECO research project PID2019-104047GB-I00. E. M. was partially supported by the NSF grant DMS-1700751, by a Poincaré Chair from the Institut Henri Poincaré and the Clay Mathematics Institute, by the Institut des Hautes Études Scientifiques (IHÉS), by a Poste Rouge CNRS at Université Paris-Sud, by the ERC Synergy Grant ERC-2020-SyG-854361-HyperK, and by the National Group for Algebraic and Geometric Structures, and their Applications (GNSAGA-INdAM). H. N. was partially supported by the NSF postdoctoral fellowship DMS-1606283, by the NSF RTG grant DMS-1246844, and by the NSF FRG grant DMS-1664215. A. P. was partially supported by the NSF postdoctoral fellowship DMS-1606460 and the NSF grant DMS-2002709. P. S. was partially supported by the ERC Consolidator Grant ERC-2017-CoG-771507-StabCondEn, by the research project PRIN 2017 “Moduli and Lie Theory”, and by research project FARE 2018 HighCaSt (grant number R18YA3ESPJ)

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bayer, A., Lahoz, M., Macrì, E. et al. Stability conditions in families. Publ.math.IHES 133, 157–325 (2021). https://doi.org/10.1007/s10240-021-00124-6

Download citation

  • Received: 26 February 2019

  • Revised: 27 April 2021

  • Accepted: 27 April 2021

  • Published: 17 May 2021

  • Issue Date: June 2021

  • DOI: https://doi.org/10.1007/s10240-021-00124-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.