Abstract
The aim of this paper is twofold. First, we introduce a new method for evaluating the multiplicity of a given discrete series representation in the space of level 1 automorphic forms of a split classical group \(G\) over \(\mathbf {Z}\), and provide numerical applications in absolute rank \(\leq 8\). Second, we prove a classification result for the level one cuspidal algebraic automorphic representations of \(\mathrm{GL}_{n}\) over \(\mathbf {Q}\) (\(n\) arbitrary) whose motivic weight is \(\leq 24\).
In both cases, a key ingredient is a classical method based on the Weil explicit formula, which allows to disprove the existence of certain level one algebraic cusp forms on \(\mathrm{GL}_{n}\), and that we push further on in this paper. We use these vanishing results to obtain an arguably “effortless” computation of the elliptic part of the geometric side of the trace formula of \(G\), for an appropriate test function.
Thoses results have consequences for the computation of the dimension of the spaces of (possibly vector-valued) Siegel modular cuspforms for \(\mathrm{Sp}_{2g}(\mathbf {Z})\): we recover all the previously known cases without relying on any, and go further, by a unified and “effortless” method.
Similar content being viewed by others
References
J. Adams and J. F. Johnson, Endoscopic groups and packets of nontempered representations, Compos. Math., 64 (1987), 271–309.
N. Arancibia, C. Moeglin and D. Renard, Paquets d’Arthur des groupes classiques et unitaires, Ann. Fac. Sci. Toulouse Math. (6), 27 (2018), 1023–1105.
J. Arthur, The invariant trace formula. II. Global theory, J. Am. Math. Soc., 1 (1988), 501–554.
J. Arthur, The \(L^{2}\)-Lefschetz numbers of Hecke operators, Invent. Math., 97 (1989), 257–290.
J. Arthur, The Endoscopic Classification of Representations: Orthogonal and Symplectic groups, American Mathematical Society Colloquium Publications, vol. 61, Am. Math. Soc., Providence, 2013.
J. Bergström, C. Faber and G. van der Geer, Siegel modular forms of degree two and three, 2017, retrieved June 2019, http://smf.compositio.nl.
R. E. Borcherds, E. Freitag and R. Weissauer, A Siegel cusp form of degree 12 and weight 12, J. Reine Angew. Math., 494 (1998), 141–153, dedicated to Martin Kneser on the occasion of his 70th birthday.
S. Böcherer, Siegel modular forms and theta series, in Theta functions—Bowdoin 1987, Part 2 (Brunswick, ME, 1987), Proc. Sympos. Pure Math., vol. 49, pp. 3–17, Am. Math. Soc., Providence, 1989.
G. Chenevier, An automorphic generalization of the Hermite-Minkowski theorem, Duke Math. J., to appear.
G. Chenevier, The characteristic masses of Niemeier lattices, preprint, 2020.
G. Chenevier, Subgroups of \(\mathrm{Spin}(7)\) or \(\mathrm{SO}(7)\) with each element conjugate to some element of \(\mathrm{G}_{2}\) and applications to automorphic forms, Doc. Math., 24 (2019), 95–161.
G. Chenevier and J. Lannes, Automorphic Forms and Even Unimodular Lattices, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 69, Springer, Berlin, 2019.
B. Conrad, Reductive group schemes, in Autour des schémas en groupes. Vol. I, Panor. Synthèses, vol. 42/43, pp. 93–444, Soc. Math. France, Paris, 2014.
G. Chenevier and D. Renard, Level One Algebraic Cusp Forms of Classical Groups of Small Rank, Mem. Am. Math. Soc., 237 (2015), no. 1121, v+122.
G. Chenevier and O. Taïbi, Siegel modular forms of weight 13 and the Leech lattice, preprint, 2019.
G. Chenevier and O. Taïbi, Tables and source of some computer programs used in this paper, 2019, https://gaetan.chenevier.perso.math.cnrs.fr/levelone/, https://otaibi.perso.math.cnrs.fr/levelone/, or the Electronic Supplementary Material published online by Springer along with this article.
F. Cléry and G. van der Geer, On vector-valued Siegel modular forms of degree 2 and weight \((j,2)\), Doc. Math., 23 (2018), 1129–1156, with two appendices by Gaëtan Chenevier.
W. Duke and Ö. Imamoḡlu, Siegel modular forms of small weight, Math. Ann., 310 (1998), 73–82.
S. Fermigier, Annulation de la cohomologie cuspidale de sous-groupes de congruence de \(\mathrm{GL}_{n}(\mathbf{Z})\), Math. Ann., 306 (1996), 247–256.
U. Fincke and M. Pohst, Improved methods for calculating vectors of short length in a lattice, including a complexity analysis, Math. Comput., 44 (1985), 463–471.
E. Freitag, Holomorphe Differentialformen zu Kongruenzgruppen der Siegelschen Modulgruppe, Invent. Math., 30 (1975), 181–196.
E. Freitag, Stabile Modulformen, Math. Ann., 230 (1977), 197–211.
E. Freitag, Die Wirkung von Heckeoperatoren auf Thetareihen mit harmonischen Koeffizienten, Math. Ann., 258 (1981/82), 419–440.
B. H. Gross and C. T. McMullen, Automorphisms of even unimodular lattices and unramified Salem numbers, J. Algebra, 257 (2002), 265–290.
B. H. Gross, On the motive of a reductive group, Invent. Math., 130 (1997), 287–313.
S. Gelbart and F. Shahidi, Boundedness of automorphic \(L\)-functions in vertical strips, J. Am. Math. Soc., 14 (2001), 79–107.
R. Howe, Automorphic forms of low rank, in Noncommutative Harmonic Analysis and Lie Groups, Lecture Notes in Math., vol. 880, Marseille, 1980, pp. 211–248, Springer, Berlin–New York, 1981.
T. Ikeda, On the lifting of elliptic cusp forms to Siegel cusp forms of degree \(2n\), Ann. Math. (2), 154 (2001), 641–681.
N. Jacobson, A note on Hermitian forms, Bull. Am. Math. Soc., 46 (1940), 264–268.
H. Jacquet, I. I. Piatetskii-Shapiro and J. A. Shalika, Rankin-Selberg convolutions, Am. J. Math., 105 (1983), 367–464.
H. Jacquet and J. A. Shalika, On Euler products and the classification of automorphic forms. II, Am. J. Math., 103 (1981), 777–815.
O. D. King, A mass formula for unimodular lattices with no roots, Math. Comput., 72 (2003), 839–863.
A. W. Knapp, Local Langlands correspondence: the Archimedean case, in Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, pp. 393–410, Amer. Math. Soc., Providence, 1994.
M.-A. Knus, Quadratic and Hermitian Forms Over Rings, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 294, Springer, Berlin, 1991.
W. Kohnen and R. Salvati Manni, Linear relations between theta series, Osaka J. Math., 41 (2004), 353–356.
K. Koike and I. Terada, Young-diagrammatic methods for the representation theory of the classical groups of type \(B_{n}\), \(C _{n}\), \(D_{n}\), J. Algebra, 107 (1987), 466–511.
G. Lachaussée, Ph. D. dissertation, Paris-Saclay university, forthcoming.
T. Mégarbané, Traces des opérateurs de Hecke sur les espaces de formes automorphes de SO7, SO8 ou SO9 en niveau 1 et poids arbitraire, J. Théor. Nr. Bordx., 30 (2018), 239–306.
J.-F. Mestre, Formules explicites et minorations de conducteurs de variétés algébriques, Compos. Math., 58 (1986), 209–232.
S. D. Miller, The highest lowest zero and other applications of positivity, Duke Math. J., 112 (2002), 83–116.
S. Mizumoto, Poles and residues of standard \(L\)-functions attached to Siegel modular forms, Math. Ann., 289 (1991), 589–612.
S. Mizumoto, Erratum to: Poles and residues of standard \(L\)-functions attached to Siegel modular forms, personal communication, 2019.
C. Moeglin and D. Renard, Sur les paquets d’arthur de \(\mathrm{Sp}(2n,\mathbf {R})\) contenant des modules unitaires de plus haut poids, scalaires, Nagoya Math. J. (2019). https://doi.org/10.1017/nmj.2019.15.
C. Moeglin and J.-L. Waldspurger, Le spectre résiduel de \(\mathrm{GL}(n)\), Ann. Sci. Ec. Norm. Super., 22 (1989), 605–674.
C. Moeglin and J.-L. Waldspurger, Décomposition spectrale et séries d’Eisenstein, Progress in Mathematics, vol. 113, Birkhäuser Verlag, Basel, 1994, Une paraphrase de l’Écriture. [A paraphrase of Scripture].
G. Poitou, Minorations de discriminants (d’après A. M. Odlyzko), Séminaire Bourbaki, Vol. 1975/76 28ème année, Exp. No. 479, pp. 136–153, Springer, Berlin, 1977, Lecture Notes in Math., 567.
G. Poitou, Sur les petits discriminants, in Séminaire Delange-Pisot-Poitou, 18e année: (1976/77), Théorie des nombres, Fasc. 1 (French), vol. 6, p. 18, Secrétariat Math., Paris, 1977
S. Rallis, Langlands’ functoriality and the Weil representation, Am. J. Math., 104 (1982), 469–515.
S. Rallis, On the Howe duality conjecture, Compos. Math., 51 (1984), 333–399.
H. L. Resnikoff, Automorphic forms of singular weight are singular forms, Math. Ann., 215 (1975), 173–193.
W. A. Stein, et al., Sage Mathematics Software (Version 6.1.1), The Sage Development Team, 2014, http://www.sagemath.org.
J.-P. Serre, Cohomologie des groupes discrets, in Prospects in Mathematics (Proc. Sympos., Princeton Univ., Princeton, N.J., 1970) Ann. of Math. Studies, vol. 70, pp. 77–169, Princeton University Press, Princeton, 1971.
C. L. Siegel, Berechnung von Zetafunktionen an ganzzahligen Stellen, Nachr. Akad. Wiss. Gött. Math.-Phys. Kl. II, 1969 (1969), 87–102.
O. Taïbi, Dimensions of spaces of level one automorphic forms for split classical groups using the trace formula, Ann. Sci. Éc. Norm. Supér. (4), 50 (2017), 269–344.
O. Taïbi, Arthur’s multiplicity formula for certain inner forms of special orthogonal and symplectic groups, J. Eur. Math. Soc., 21 (2019), 839–871.
J. Tate, Number theoretic background, in Automorphic Forms, Representations and \(L\)-Functions, Part 2 (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Proc. Sympos. Pure Math. vol. XXXIII, pp. 3–26, Am. Math. Soc., Providence, 1979.
G. van der Geer, Siegel modular forms and their applications, in The 1-2-3 of Modular Forms, Universitext, pp. 181–245, Springer, Berlin, 2008.
G. E. Wall, On the conjugacy classes in the unitary, symplectic and orthogonal groups, J. Aust. Math. Soc., 3 (1963), 1–62.
R. Weissauer, Vektorwertige Siegelsche Modulformen kleinen Gewichtes, J. Reine Angew. Math., 343 (1983), 184–202.
H. Zassenhaus, On the spinor norm, Arch. Math., 13 (1962), 434–451.
Author information
Authors and Affiliations
Additional information
Gaëtan Chenevier and Olivier Taïbi are supported by the C.N.R.S. and by the project ANR-14-CE25.
Electronic Supplementary Material
Below is the link to the electronic supplementary material.
About this article
Cite this article
Chenevier, G., Taïbi, O. Discrete series multiplicities for classical groups over \(\mathbf {Z}\) and level 1 algebraic cusp forms. Publ.math.IHES 131, 261–323 (2020). https://doi.org/10.1007/s10240-020-00115-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10240-020-00115-z