Skip to main content
Log in

Riemannian hyperbolization

  • Published:
Publications mathématiques de l'IHÉS Aims and scope Submit manuscript

Abstract

The strict hyperbolization process of Charney and Davis produces a large and rich class of negatively curved spaces (in the geodesic sense). This process is based on an earlier version introduced by Gromov and later studied by Davis and Januszkiewicz. If M is a manifold its Charney-Davis strict hyperbolization is also a manifold, but the negatively curved metric obtained is very far from being Riemannian because it has a large and complicated set of singularities. We show that these singularities can be removed (provided the hyperolization piece is large). Hence the strict hyperbolization process can be done in the Riemannian setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ardanza-Trevillano, Exotic smooth structures on negatively curved manifolds that are not of the homotopy type of a locally symmetric space, PhD. Thesis, SUNY Binghamton, 2000.

  2. I. Belegradek and V. Kapovitch, Classification of negatively pinched manifolds with amenable fundamental groups, Acta Math., 196 (2006), 229–260, see also corrected version (28 August 2010), arXiv:math1040 2268rt.

    Article  MathSciNet  Google Scholar 

  3. R. L. Bishop and B. O’Neill, Manifolds of negative curvature, Trans. Am. Math. Soc., 145 (1969), 1–49.

    Article  MathSciNet  Google Scholar 

  4. M. Bridson and A. Haeflinger, Metric spaces of non-positive curvature, Springer, Berlin, 1999.

    Book  Google Scholar 

  5. R. M. Charney and M. W. Davis, Strict hyperbolization, Topology, 34 (1995), 329–350.

    Article  MathSciNet  Google Scholar 

  6. K. Corlette, Archimedean superrigidity and hyperbolic geometry, Ann. Math., 135 (1992), 165–182.

    Article  MathSciNet  Google Scholar 

  7. J. F. Davis and F. Fang, An almost flat manifolds with a cyclic or quaternionic holonomy group bounds, J. Differ. Geom., 103 (2016), 289–296.

    Article  MathSciNet  Google Scholar 

  8. M. W. Davis and T. Januszkiewicz, Hyperbolization of polyhedra, J. Differ. Geom., 34 (1991), 347–388.

    Article  MathSciNet  Google Scholar 

  9. M. Deraux, A negatively curved Kähler threefold not covered by the ball, Invent. Math., 160 (2005), 501–525.

    Article  MathSciNet  Google Scholar 

  10. J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Am. J. Math., 86 (1964), 109–160.

    Article  MathSciNet  Google Scholar 

  11. F. T. Farrell and W. C. Hsiang, The Whitehead group of poly-(finite or cyclic) groups, J. Lond. Math. Soc., 24 (1982), 308–324.

    MathSciNet  MATH  Google Scholar 

  12. F. T. Farrell and L. E. Jones, Negatively curved manifolds with exotic smooth structures, J. Am. Math. Soc., 2 (1989), 899–908.

    Article  MathSciNet  Google Scholar 

  13. F. T. Farrell and S. Zdravskoska, Do almost flat manifolds bound? Mich. Math. J., 30 (1983), 199–208.

    Article  MathSciNet  Google Scholar 

  14. M. Gromov, Manifolds of negative curvature, J. Differ. Geom., 13 (1978), 231–241.

    Article  MathSciNet  Google Scholar 

  15. M. Gromov, Almost flat manifold, J. Differ. Geom., 13 (1978), 223–230.

    Article  MathSciNet  Google Scholar 

  16. M. Gromov, Hyperbolic groups, in S. M. Gersten (ed.) Essays in group theory, M.S.R.I. publ., vol. 8, pp. 75–284, Springer, New York, 1987.

    Chapter  Google Scholar 

  17. M. Gromov, Foliated plateau problem, Geom. Funct. Anal., 1 (1991), 14–79.

    Article  MathSciNet  Google Scholar 

  18. M. Gromov and W. Thurston, Pinching constants for hyperbolic manifolds, Invent. Math., 89 (1987), 1–12.

    Article  MathSciNet  Google Scholar 

  19. G. C. Hamrick and D. C. Royster, Flat Riemannian manifolds are boundaries, Invent. Math., 66 (1982), 405–413.

    Article  MathSciNet  Google Scholar 

  20. L. Hernández, Kähler manifolds and 1/4-pinching, Duke Math. J., 62 (1991), 601–611.

    Article  MathSciNet  Google Scholar 

  21. D. D. Long and A. W. Reid, On the geometric boundaries of hyperbolic 4-manifolds, Geom. Topol., 4 (2000), 171–178.

    Article  MathSciNet  Google Scholar 

  22. N. Mok, Y.-T. Siu and S.-K. Yeung, Geometric superrigidity, Invent. Math., 113 (1993), 57–83.

    Article  MathSciNet  Google Scholar 

  23. G. D. Mostow and Y. T. Siu, A compact Kähler manifold of negative curvature not covered by the ball, Ann. Math., 112 (1980), 312–360.

    Article  Google Scholar 

  24. J. R. Munkres, Elementary differential topology, Annals of Math. Studies, vol. 54, Princeton University Press, Princeton, 1963.

    Book  Google Scholar 

  25. S. P. Novikov, Rational Pontryagin classes. Homeomorphism and homotopy type of closed manifolds. I, Izv. Akad. Nauk SSSR, Ser. Mat., 29 (1965), 1373–1388.

    MathSciNet  Google Scholar 

  26. Olshanski, Almost every group is hyperbolic, Int. J. Algebra Comput., 2 (1992), 1–17.

    Article  MathSciNet  Google Scholar 

  27. P. Ontaneda, On the Farrell and Jones warping deformation, J. Lond. Math. Soc., 92 (2015), 566–582.

    Article  MathSciNet  Google Scholar 

  28. P. Ontaneda, Normal smoothings for smooth cube manifolds, Asian J. Math., 20 (2016), 709–724.

    Article  MathSciNet  Google Scholar 

  29. P. Ontaneda, Deforming an \(\varepsilon \)-close to hyperbolic metric to a warp product, Mich. Math. J., 65 (2016), 293–701.

    MathSciNet  Google Scholar 

  30. P. Ontaneda, Cut limits on hyperbolic extensions, Mich. Math. J., 65 (2016), 703–714.

    Article  MathSciNet  Google Scholar 

  31. P. Ontaneda, Normal smoothings for Charney-Davis strict hyperbolizations, J. Topol. Anal., 9 (2017), 127–165.

    Article  MathSciNet  Google Scholar 

  32. P. Ontaneda, Hyperbolic extensions and metrics \(\varepsilon \)-close to hyperbolic, Indiana Univ. Math. J., 66 (2017), 609–630.

    Article  MathSciNet  Google Scholar 

  33. P. Ontaneda, Deforming an \(\varepsilon \)-close to hyperbolic metric to a hyperbolic metric, Proc. R. Soc. Edinb. A, 148 (2018), 629–641.

    Article  MathSciNet  Google Scholar 

  34. E. A. Ruh, Almost flat manifolds, J. Differ. Geom., 17 (1982), 1–14.

    Article  MathSciNet  Google Scholar 

  35. J. Sampson, Applications of harmonic maps to Kähler geometry, Contemp. Math., 49 (1986), 125–133.

    Article  Google Scholar 

  36. Z. M. Shen, On complete Riemannian manifolds with collapsed ends, Pac. J. Math., 163 (1994), 175–182.

    Article  MathSciNet  Google Scholar 

  37. S. Upadhyay, A bounding question for almost flat manifolds, Trans. Am. Math. Soc., 353 (2001), 963–972.

    Article  MathSciNet  Google Scholar 

  38. S.-T. Yau, Open problems in differential geometry, Proc. Symp. Pure Math., 54 (1993), 1–28.

    MATH  Google Scholar 

  39. F. Zheng, Hirzebruch-Kato surfaces, Deligne-Mostow’s construction, and new examples of negatively curved compact Kähler surfaces, Invent. Math., 103 (1991), 527–535.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Ontaneda.

Additional information

Pedro Ontaneda was partially supported by a NSF grant.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ontaneda, P. Riemannian hyperbolization. Publ.math.IHES 131, 1–72 (2020). https://doi.org/10.1007/s10240-020-00113-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10240-020-00113-1

Navigation