Abstract
We prove a Russo-Seymour-Welsh percolation theorem for nodal domains and nodal lines associated to a natural infinite dimensional space of real analytic functions on the real plane. More precisely, let \(U\) be a smooth connected bounded open set in \(\mathbf{R}^{2}\) and \(\gamma, \gamma '\) two disjoint arcs of positive length in the boundary of \(U\). We prove that there exists a positive constant \(c\), such that for any positive scale \(s\), with probability at least \(c\) there exists a connected component of the set \(\{x\in \smash{\bar{U}},\ f(sx) > 0\} \) intersecting both \(\gamma \) and \(\gamma '\), where \(f\) is a random analytic function in the Wiener space associated to the real Bargmann-Fock space. For \(s\) large enough, the same conclusion holds for the zero set \(\{x\in \smash{\bar{U}},\ f(sx) = 0\} \). As an important intermediate result, we prove that sign percolation for a general stationary Gaussian field can be made equivalent to a correlated percolation model on a lattice.
This is a preview of subscription content, access via your institution.
References
R. J. Adler and J. E. Taylor, Random Fields and Geometry, Springer, New York, 2007.
M. Aizenman and A. Burchard, Hölder regularity and dimension bounds for random curves, Duke Math. J., 99 (1998), 41.
K. S. Alexander, Boundedness of level lines for two-dimensional random fields, Ann. Probab., 24 (1996), 1653–1674.
N. Anantharaman, Topologie Des Hypersurfaces Nodales De Fonctions Aléatoires Gaussiennes, Astérisque, 390 (2017), 369–408.
J.-M. Azaïs and M. Wschebor, Level Sets and Extrema of Random Processes and Fields, Wiley, Hoboken, 2009.
D. Basu and A. Sapozhnikov, Crossing probabilities for critical Bernoulli percolation on slabs, preprint, pp. 1–14 (2015).
V. Beffara and H. Duminil-Copin, Planar percolation with a glimpse of Schramm–Loewner evolution, Probab. Surv., 10 (2013), 1–50.
D. Beliaev and Z. Kereta, On the Bogomolny-Schmit conjecture, J. Phys. A, Math. Theor., 46 (2013), 5.
D. Beliaev and S. Muirhead, Discretisation schemes for level sets of planar Gaussian fields, 2017. arXiv:1702.02134.
P. Bérard, Volume des ensembles nodaux des fonctions propres du laplacien, in Bony-Sjöstrand-Meyer Seminar, 1984–1985, École Polytech, Palaiseau, 1985, Exp. No. 14, 10.
P. Bleher, B. Shiffman and S. Zelditch, Universality and scaling of correlations between zeros on complex manifolds, Invent. Math., 142 (2000), 351–395.
E. Bogomolny, R. Dubertrand and C. Schmit, SLE description of the nodal lines of random wavefunctions, J. Phys. A, Math. Theor., 40 (2007), 381–395.
E. Bogomolny and C. Schmit, Percolation model for nodal domains of chaotic wave functions, Phys. Rev. Lett., 88, 114102 (2002).
E. Bogomolny and C. Schmit, Random wavefunctions and percolation, J. Phys. A, Math. Theor., 40 (2007), 14033–14043.
B. Bollobas and O. Riordan, The critical probability for random Voronoi percolation in the plane is 1/2, Probab. Theory Relat. Fields, 136 (2004), 417–468.
S. R. Broadbent and J. M. Hammersley, Percolation processes, Math. Proc. Camb. Philos. Soc., 53 (1957), 629.
F. Camia and C. M. Newman, Two-dimensional critical percolation: the full scaling limit, Commun. Math. Phys., 268 (2006), 1–38.
H. Duminil-Copin, C. Hongler and P. Nolin, Connection probabilities and RSW-type bounds for the two-dimensional FK Ising model, Commun. Pure Appl. Math., 64 (2011), 1165–1198.
R. Feng and S. Zelditch, Median and mean of the supremum of \(L^{2}\) normalized random holomorphic fields, J. Funct. Anal., 266 (2014), 5085–5107.
D. Gayet and J.-Y. Welschinger, Exponential rarefaction of real curves with many components, Publ. Math. Inst. Hautes Études Sci. (2011), 69–96. doi:10.1007/s10240-011-0033-3.
D. Gayet and J.-Y. Welschinger, Betti numbers of random nodal sets of elliptic pseudo-differential operators, Asian J. Math. (2014, to appear). arXiv:1406.0934.
D. Gayet and J.-Y. Welschinger, Lower estimates for the expected Betti numbers of random real hypersurfaces, J. Lond. Math. Soc. (2), 90 (2014), 105–120.
D. Gayet and J.-Y. Welschinger, What is the total Betti number of a random real hypersurface? J. Reine Angew. Math. (2014), 137–168. doi:10.1515/crelle-2012-0062.
D. Gayet and J.-Y. Welschinger, Universal components of random nodal sets, Commun. Math. Phys. (2015, to appear). doi:10.1007/s00220-016-2595-x. arXiv:1503.01582.
D. Gayet and J.-Y. Welschinger, Betti numbers of random real hypersurfaces and determinants of random symmetric matrices, J. Eur. Math. Soc., 18 (2016), 733–772.
G. Grimmett, Percolation, 2nd ed., Springer, Berlin, 1999.
L. Gross, Abstract Wiener spaces, in Proc. 5th Berkeley Symp. Math. Stat. Probab., Univ. Calif. 1965/1966 2, Part 1, pp. 31–42, 1967.
T. E. Harris, A lower bound for the critical probability in a certain percolation process, Math. Proc. Camb. Philos. Soc., 56 (1960), 13–20.
L. Hörmander, The spectral function of an elliptic operator, Acta Math., 121 (1968), 193–218.
H. Kesten, The critical probability of bond percolation on the square lattice equals 1/2, Commun. Math. Phys., 74 (1980), 41–59.
E. Kostlan, On the distribution of roots of random polynomials, in From Topology to Computation: Proceedings of the Smalefest, Berkeley, CA, 1990, pp. 419–431, Springer, New York, 1993.
T. Letendre, Expected volume and Euler characteristic of random submanifolds, J. Funct. Anal., 270 (2016), 3047–3110.
S. A. Molchanov and A. K. Stepanov, Percolation in random fields. II, Theor. Math. Phys., 55 (1983), 592–599.
F. Nazarov and M. Sodin, On the number of nodal domains of random spherical harmonics, Am. J. Math., 131 (2009), 1337–1357.
F. Nazarov and M. Sodin, Asymptotic laws for the spatial distribution and the number of connected components of zero sets of Gaussian random functions, J. Math. Phys. Anal. Geom., 12 (2016), 205–278. doi:10.15407/mag12.03.205.
C. M. Newman, V. Tassion and W. Wu, Critical percolation and the minimal spanning tree in slabs, Commun. Pure Appl. Math., 1 (2017), 1–35. doi:10.1002/cpa.21714.
L. D. Pitt, Positively correlated normal variables are associated, Ann. Probab., 10 (1982), 496–499.
S. S. Podkorytov, The mean value of the Euler characteristic of an algebraic hypersurface, Algebra Anal., 11 (1999), 185–193.
L. Russo, A note on percolation, Z. Wahrscheinlichkeitstheor. Verw. Geb., 43 (1978), 39–48.
P. D. Seymour and D. J. A. Welsh, Percolation probabilities on the square lattice, Ann. Discrete Math., 3 (1978), 227–245.
B. Shiffman and S. Zelditch, Distribution of zeros of random and quantum chaotic sections of positive line bundles, Commun. Math. Phys., 200 (1999), 661–683.
M. Shub and S. Smale, Complexity of Bezout’s theorem. II. Volumes and probabilities, in Computational Algebraic Geometry, Nice, 1992, Progr. Math., vol. 109, pp. 267–285, Birkhäuser, Boston, 1993.
S. Smirnov, Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits, C. R. Acad. Sci. Paris Sér. I Math., 333 (2001), 239–244.
V. Tassion, Crossing probabilities for Voronoi percolation, Ann. Probab., 44 (2016), 3385–3398.
G. Tian, On a set of polarized Kähler metrics on algebraic manifolds, J. Differ. Geom., 32 (1990), 99–130.
S. Zelditch, Szegő kernels and a theorem of Tian, Int. Math. Res. Not. (1998), 317–331. doi:10.1155/S107379289800021X.
Author information
Authors and Affiliations
Corresponding author
About this article
Cite this article
Beffara, V., Gayet, D. Percolation of random nodal lines. Publ.math.IHES 126, 131–176 (2017). https://doi.org/10.1007/s10240-017-0093-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10240-017-0093-0