Publications mathématiques de l'IHÉS

, Volume 124, Issue 1, pp 165–317 | Cite as

On the Fukaya category of a Fano hypersurface in projective space



This paper is about the Fukaya category of a Fano hypersurface \(X \subset \mathbf {CP}^{n}\). Because these symplectic manifolds are monotone, both the analysis and the algebra involved in the definition of the Fukaya category simplify considerably. The first part of the paper is devoted to establishing the main structures of the Fukaya category in the monotone case: the closed–open string maps, weak proper Calabi–Yau structure, Abouzaid’s split-generation criterion, and their analogues when weak bounding cochains are included. We then turn to computations of the Fukaya category of the hypersurface \(X\): we construct a configuration of monotone Lagrangian spheres in \(X\), and compute the associated disc potential. The result coincides with the Hori–Vafa superpotential for the mirror of \(X\) (up to a constant shift in the Fano index 1 case). As a consequence, we give a proof of Kontsevich’s homological mirror symmetry conjecture for \(X\). We also explain how to extract non-trivial information about Gromov–Witten invariants of \(X\) from its Fukaya category.


Modulus Space Maslov Index Quantum Cohomology Hochschild Cohomology Homological Mirror Symmetry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Abouzaid, A geometric criterion for generating the Fukaya category, Publ. Math. Inst. Hautes Études Sci., 112 (2010), 191–240. doi: 10.1007/s10240-010-0028-5. MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    M. Abouzaid, K. Fukaya, Y. G. Oh, H. Ohta and K. Ono, Quantum cohomology and split generation in Lagrangian Floer theory, in preparation. Google Scholar
  3. 3.
    P. Albers, A Lagrangian Piunikhin–Salamon–Schwarz morphism and two comparison homomorphisms in Floer homology, Int. Math. Res. Not., 2008 (2008), 56. doi: 10.1093/imrn/rnm134. MathSciNetMATHGoogle Scholar
  4. 4.
    D. Auroux, Mirror symmetry and T-duality in the complement of an anticanonical divisor, J. Gökova Geom. Topol., 1 (2007), 51–91. MathSciNetMATHGoogle Scholar
  5. 5.
    D. Auroux, A beginner’s introduction to Fukaya categories, in Contact and symplectic topology, Bolyai Soc. Math. Stud., vol. 26, pp. 85–136, János Bolyai Math. Soc., Budapest, 2014. doi: 10.1007/978-3-319-02036-5_3. CrossRefGoogle Scholar
  6. 6.
    A. Beauville, Quantum cohomology of complete intersections, Mat. Fiz. Anal. Geom., 2 (1995), 384–398. MathSciNetMATHGoogle Scholar
  7. 7.
    P. Biran and O. Cornea, Lagrangian topology and enumerative geometry, Geom. Topol., 16 (2012), 963–1052. doi: 10.2140/gt.2012.16.963. MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    P. Biran and O. Cornea, Lagrangian cobordism and Fukaya categories, Geom. Funct. Anal., 24 (2014), 1731–1830. doi: 10.1007/s00039-014-0305-4. MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    P. Biran and C. Membrez, The Lagrangian Cubic Equation, 2014, arXiv:1406.6004.
  10. 10.
    R. Bott and L. Tu, Differential forms in algebraic topology, Springer, Berlin, 1982. CrossRefMATHGoogle Scholar
  11. 11.
    R. Buchweitz, Maximal Cohen–Macaulay modules and Tate-cohomology over Gorenstein rings, 1986. Google Scholar
  12. 12.
    C. H. Cho, Products of Floer cohomology of torus fibers in toric Fano manifolds, Commun. Math. Phys., 260 (2005), 613–640. doi: 10.1007/s00220-005-1421-7. MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    C. H. Cho, Strong homotopy inner product of an \(A_{\infty}\)-algebra, Int. Math. Res. Not., 2008 (2008), 35. doi: 10.1093/imrn/rnn041. MATHGoogle Scholar
  14. 14.
    C. H. Cho, H. Hong and S. C. Lau, Localized mirror functor for Lagrangian immersions, and homological mirror symmetry for \(\mathbf {P}^{1}_{a,b,c}\), 2013, arXiv:1308.4651.
  15. 15.
    C. H. Cho and Y. G. Oh, Floer cohomology and disc instantons of Lagrangian torus fibers in Fano toric manifolds, Asian J. Math., 10 (2006), 773–814. doi: 10.4310/AJM.2006.v10.n4.a10. MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    M. Cohen and S. Montgomery, Group-graded rings, smash products, and group actions, Trans. Am. Math. Soc., 282 (1984), 237–258. doi: 10.2307/1999586. MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    B. Crauder and R. Miranda, Quantum cohomology of rational surfaces, in The moduli space of curves, Progr. Math., vol. 129, Texel Island, 1994, pp. 33–80, 1995. doi: 10.1007/s10107-010-0402-6. CrossRefGoogle Scholar
  18. 18.
    V. Dolgushev, A Proof of Tsygan’s Formality Conjecture for an Arbitrary Smooth Manifold, Ph.D. thesis, MIT, 2005. Google Scholar
  19. 19.
    T. Dyckerhoff, Compact generators in categories of matrix factorizations, Duke Math. J., 159 (2011), 223–274. doi: 10.1215/00127094-1415869. MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Graduate Texts in Mathematics, vol. 150, Springer, Berlin, 1995. MATHGoogle Scholar
  21. 21.
    A. Floer, H. Hofer and D. Salamon, Transversality in elliptic Morse theory for the symplectic action, Duke Math. J., 80 (1995), 251–292. doi: 10.1215/S0012-7094-95-08010-7. MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    K. Fukaya and Y. G. Oh, Zero-loop open strings in the cotangent bundle and Morse homotopy, Asian J. Math., 1 (1997), 96–180. MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    K. Fukaya, Y. Oh, H. Ohta and K. Ono, Lagrangian Floer theory on compact toric manifolds: survey, in Surveys in differential geometry, vol. XVII, pp. 229–298, Int. Press, Boston, 2012. doi: 10.4310/SDG.2012.v17.n1.a6. Google Scholar
  24. 24.
    K. Fukaya, Y. G. Oh, H. Ohta and K. Ono, Lagrangian intersection Floer theory—anomaly and obstruction, Am. Math. Soc., Providence, 2007. MATHGoogle Scholar
  25. 25.
    K. Fukaya, Y. G. Oh, H. Ohta and K. Ono, Lagrangian surgery and metamorphosis of pseudo-holomorphic polygons, 2009. Preprint, available at
  26. 26.
    K. Fukaya, Y. G. Oh, H. Ohta and K. Ono, Lagrangian Floer theory on compact toric manifolds, I, Duke Math. J., 151 (2010), 23–175. doi: 10.1215/00127094-2009-062. MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    K. Fukaya, Y. G. Oh, H. Ohta and K. Ono, Lagrangian Floer theory on compact toric manifolds II: bulk deformations, Sel. Math. New Ser., 17 (2011), 609–711. doi: 10.1007/s00029-011-0057-z. MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    S. Ganatra, Symplectic Cohomology and Duality for the Wrapped Fukaya Category, Ph.D. thesis, MIT, 2012. Google Scholar
  29. 29.
    S. Ganatra, T. Perutz and N. Sheridan, Mirror symmetry: from categories to curve counts, 2015, arXiv:1510.03839.
  30. 30.
    E. Getzler, Cartan homotopy formulas and the Gauss–Manin connection in cyclic homology, Isr. Math. Conf. Proc., 7 (1993), 1–12. MathSciNetMATHGoogle Scholar
  31. 31.
    E. Getzler, Lie theory for nilpotent \(L_{\infty}\) algebras, Ann. Math., 170 (2009), 271–301. MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    A. Givental, Equivariant Gromov–Witten invariants, Int. Math. Res. Not., 1996 (1996), 613–663. doi: 10.1155/S1073792896000414. MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    M. Gross, Tropical geometry and mirror symmetry, CBMS Regional Conference Series in Mathematics, vol. 114, Am. Math. Soc., Providence, 2011. MATHGoogle Scholar
  34. 34.
    G. Hochschild, B. Kostant and A. Rosenberg, Differential forms on regular affine algebras, Trans. Am. Math. Soc., 102 (1962), 383–408. MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    K. Hori, Linear models of supersymmetric \(D\)-branes, in Symplectic geometry and mirror symmetry, Seoul, 2000, pp. 111–186, World Sci. Publ., River Edge, 2001. CrossRefGoogle Scholar
  36. 36.
    M. Jinzenji, On Quantum Cohomology Rings for Hypersurfaces in \(\mathbf {CP}^{N-1}\), J. Math. Phys., 38 (1997), 6613–6638. doi: 10.1063/1.532228. MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    A. Kapustin and Y. Li, \(D\)-branes in topological minimal models: the Landau–Ginzburg approach, J. High Energy Phys., 07 (2004), 26 pp. (electronic). doi: 10.1088/1126-6708/2004/07/045.
  38. 38.
    A. Keating, Lagrangian tori in four-dimensional Milnor fibres, Geom. Funct. Anal., 25 (2015), 1822–1901. doi: 10.1007/s00039-015-0353-4. MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    M. Kontsevich, Homological algebra of mirror symmetry, in Proceedings of the International Congress of Mathematicians, Zürich, 1994, pp. 120–139, 1994. Google Scholar
  40. 40.
    M. Kontsevich, Lectures at ENS Paris. Notes by J. Bellaiche, J.-F. Dat, I. Marin, G. Racinet and H. Randriambololona (1998). Google Scholar
  41. 41.
    M. Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys., 66 (2003), 157–216. doi: 10.1023/ MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    M. Kontsevich and Y. Soibelman, Notes on \(A_{\infty}\) algebras, \(A_{\infty}\) categories and non-commutative geometry. I, in Homological Mirror Symmetry: New Developments and Perspectives, Lecture Notes in Physics, vol. 757, pp. 153–219, Springer, Berlin, 2008. Google Scholar
  43. 43.
    T. Lada and M. Markl, Strongly homotopy Lie algebras, Commun. Algebra, 23 (1995), 2147–2161. doi: 10.1080/00927879508825335. MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    H. Lawson and M. Michelsohn, Spin geometry, Princeton University Press, Princeton, 1989. MATHGoogle Scholar
  45. 45.
    L. Lazzarini, Relative frames on \(J\)-holomorphic curves, J. Fixed Point Theory Appl., 9 (2011), 213–256. doi: 10.1007/s11784-010-0004-1. MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    J. L. Loday, Cyclic homology, Grundlehren der mathematischen Wissenschaften, vol. 301, 1998. MATHGoogle Scholar
  47. 47.
    D. McDuff and D. Salamon, J-holomorphic Curves and Symplectic Topology, American Mathematical Society Colloquium Publications, Am. Math. Soc., Providence, 2004. CrossRefMATHGoogle Scholar
  48. 48.
    Y. G. Oh, Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks I, Commun. Pure Appl. Math., 46 (1993), 949–993. doi: 10.1002/cpa.3160460702. MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    Y. G. Oh, Addendum to ‘Floer cohomology of Lagrangian intersections and pseudo-holomorphic discs, I’, Commun. Pure Appl. Math., 48 (1995), 1299–1302. doi: 10.1002/cpa.3160481104. CrossRefMATHGoogle Scholar
  50. 50.
    Y. G. Oh and D. Kwon, Structure of the image of (pseudo)-holomorphic disks with totally real boundary conditions, Commun. Anal. Geom., 8 (2000), 31–82. MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    D. Orlov, Triangulated categories of singularities and D-branes in Landau–Ginzburg models, Proc. Steklov Inst. Math., 246 (2004), 227–248. MathSciNetMATHGoogle Scholar
  52. 52.
    S. Piunikhin, D. Salamon and M. Schwarz, Symplectic Floer–Donaldson theory and quantum cohomology, in Contact and symplectic geometry, pp. 171–200, Cambridge University Press, Cambridge, 1996. Google Scholar
  53. 53.
    A. F. Ritter and I. Smith, The monotone wrapped Fukaya category and the open-closed string map, Sel. Math. New Ser., to appear. Google Scholar
  54. 54.
    Y. Ruan and G. Tian, A mathematical theory of quantum cohomology, J. Differ. Geom., 42 (1995), 259–367. MathSciNetMATHGoogle Scholar
  55. 55.
    P. Seidel, Graded Lagrangian submanifolds, Bull. Soc. Math. Fr., 128 (1999), 103–149. MathSciNetMATHGoogle Scholar
  56. 56.
    P. Seidel, Fukaya categories and deformations, in Proceedings of the International Congress of Mathematicians, Beijing, vol. 2, pp. 351–360, 2002. Google Scholar
  57. 57.
    P. Seidel, Homological mirror symmetry for the quartic surface, Mem. Am. Math. Soc. (2015). doi: 10.1090/memo/1116. MathSciNetMATHGoogle Scholar
  58. 58.
    P. Seidel, A biased view of symplectic cohomology, in Current Developments in Mathematics, Harvard, 2006, pp. 211–253, 2008. Google Scholar
  59. 59.
    P. Seidel, \(A_{\infty}\) subalgebras and natural transformations, Homol. Homotopy Appl., 10 (2008), 83–114. MathSciNetCrossRefMATHGoogle Scholar
  60. 60.
    P. Seidel, Fukaya categories and Picard–Lefschetz Theory, J. Eur. Math. Soc. (2008). Google Scholar
  61. 61.
    P. Seidel, Suspending Lefschetz fibrations, with an application to local mirror symmetry, Commun. Math. Phys., 297 (2010), 515–528. doi: 10.1007/s00220-009-0944-8. MathSciNetCrossRefMATHGoogle Scholar
  62. 62.
    P. Seidel, Abstract analogues of flux as symplectic invariants, Mém. Soc. Math. Fr., 137 (2014), 1–135. MathSciNetMATHGoogle Scholar
  63. 63.
    P. Seidel, Homological mirror symmetry for the genus two curve, J. Algebraic Geom., 20 (2011), 727–769. doi: 10.1090/S1056-3911-10-00550-3. MathSciNetCrossRefMATHGoogle Scholar
  64. 64.
    P. Seidel, Fukaya \(A_{\infty}\)-structures associated to Lefschetz fibrations II, 2014, arXiv:1404.1352.
  65. 65.
    P. Seidel and R. Thomas, Braid group actions on derived categories of coherent sheaves, Duke Math. J., 108 (2001), 37–108. doi: 10.1215/S0012-7094-01-10812-0. MathSciNetCrossRefMATHGoogle Scholar
  66. 66.
    N. Sheridan, On the homological mirror symmetry conjecture for pairs of pants, J. Differ. Geom., 89 (2011), 271–367. MathSciNetMATHGoogle Scholar
  67. 67.
    N. Sheridan, Homological mirror symmetry for Calabi–Yau hypersurfaces in projective space, Invent. Math., 199 (2015), 1–186. MathSciNetCrossRefMATHGoogle Scholar
  68. 68.
    I. Smith, Floer cohomology and pencils of quadrics, Invent. Math., 189 (2012), 149–250. doi: 10.1007/s00222-011-0364-1. MathSciNetCrossRefMATHGoogle Scholar
  69. 69.
    T. Tradler, Infinity-inner-products on A-infinity-algebras, J. Homotopy Relat. Struct., 3 (2008), 245–271. MathSciNetMATHGoogle Scholar
  70. 70.
    C. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. CrossRefMATHGoogle Scholar
  71. 71.
    Y. Yoshino, Cohen–Macaulay Modules over Cohen–Macaulay Rings, Mathematical Society Lecture Note Series, vol. 146, Cambridge University Press, London, 1990. MATHGoogle Scholar

Copyright information

© IHES and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of MathematicsPrinceton University, Fine HallPrincetonUSA

Personalised recommendations