Abstract
We prove asymptotic stability of shear flows close to the planar Couette flow in the 2D inviscid Euler equations on T×R. That is, given an initial perturbation of the Couette flow small in a suitable regularity class, specifically Gevrey space of class smaller than 2, the velocity converges strongly in L 2 to a shear flow which is also close to the Couette flow. The vorticity is asymptotically driven to small scales by a linear evolution and weakly converges as t→±∞. The strong convergence of the velocity field is sometimes referred to as inviscid damping, due to the relationship with Landau damping in the Vlasov equations. This convergence was formally derived at the linear level by Kelvin in 1887 and it occurs at an algebraic rate first computed by Orr in 1907; our work appears to be the first rigorous confirmation of this behavior on the nonlinear level.
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
References
V. I. Arnold and B. A. Khesin, Topological Methods in Hydrodynamics, Applied Mathematical Sciences, vol. 125, Springer, New York, 1998.
J. Baggett, T. Driscoll and L. Trefethen, A mostly linear model of transition of turbulence, Phys. Fluids, 7 (1995), 833–838.
H. Bahouri and J.-Y. Chemin, Équations de transport relatives á des champs de vecteurs non-lipschitziens et mécanique des fluides, Arch. Ration. Mech. Anal., 127 (1994), 159–181.
H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 343, Springer, Heidelberg, 2011.
N. Balmforth and P. Morrison, Normal modes and continuous spectra, Ann. N.Y. Acad. Sci., 773 (1995), 80–94.
N. Balmforth and P. Morrison, Singular eigenfunctions for shearing fluids I, Institute for Fusion Studies Report, University of Texas-Austin, 692 (1995), 1–80.
N. Balmforth, P. Morrison and J.-L. Thiffeault, Pattern formation in Hamiltonian systems with continuous spectra; a normal-form single-wave model, preprint (2013).
N. J. Balmforth and P. J. Morrison, Hamiltonian description of shear flow, in Large-Scale Atmosphere-Ocean Dynamics, vol. II, pp. 117–142, Cambridge Univ. Press, Cambridge, 2002.
C. Bardos and S. Benachour, Domaine d’analycité des solutions de l’équation d’Euler dans un ouvert de R n, Ann. Sc. Norm. Super. Pisa, Cl. Sci., 4 (1977), 647–687.
C. Bardos, Y. Guo and W. Strauss, Stable and unstable ideal plane flows, Chin. Ann. Math., Ser. B, 23 (2002), 149–164. Dedicated to the memory of Jacques-Louis Lions.
A. Bassom and A. Gilbert, The spiral wind-up of vorticity in an inviscid planar vortex, J. Fluid Mech., 371 (1998), 109–140.
J. Bedrossian, N. Masmoudi and C. Mouhot, Landau damping: paraproducts and Gevrey regularity, arXiv:1311.2870, 2013.
J. Bedrossian, N. Masmoudi and V. Vicol, Enhanced dissipation and inviscid damping in the inviscid limit of the Navier-Stokes equations near the 2D Couette flow, arXiv:1408.4754, 2014.
J. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non lináires, Ann. Sci. Éc. Norm. Super., 14 (1981), 209–246.
S. Bottin, O. Dauchot, F. Daviaud and P. Manneville, Experimental evidence of streamwise vortices as finite amplitude solutions in transitional plane Couette flow, Phys. Fluids, 10 (1998), 2597.
F. Bouchet and H. Morita, Large time behavior and asymptotic stability of the 2D Euler and linearized Euler equations, Physica D, 239 (2010), 948–966.
J. Boyd, The continuous spectrum of linear Couette flow with the beta effect, J. Atmos. Sci., 40 (1983), 2304–2308.
R. Briggs, J. Daugherty and R. Levy, Role of Landau damping in crossed-field electron beams and inviscid shear flow, Phys. Fluids, 13 (1970).
E. Caglioti and C. Maffei, Time asymptotics for solutions of Vlasov-Poisson equation in a circle, J. Stat. Phys., 92 (1998).
R. Camassa and C. Viotti, Transient dynamics by continuous-spectrum perturbations in stratified shear flows, J. Fluid Mech., 717 (2013).
K. M. Case, Plasma oscillations, Ann. Phys., 7 (1959), 349–364.
K. M. Case, Stability of inviscid plane Couette flow, Phys. Fluids, 3 (1960), 143–148.
A. Cerfon, J. Freidberg, F. Parra and T. Antaya, Analytic fluid theory of beam spiraling in high-intensity cyclotrons, Phys. Rev. ST Accel. Beams, 16 (2013), 024202.
J.-Y. Chemin, Le système de Navier-Stokes incompressible soixante dix ans après Jean Leray, in Actes des Journées Mathématiques à la Mémoire de Jean Leray, Sémin. Congr, vol. 9, pp. 99–123, Soc. Math. France, Paris, 2004.
J.-Y. Chemin, I. Gallagher and M. Paicu, Global regularity for some classes of large solutions to the Navier-Stokes equations, Ann. Math. (2), 173 (2011), 983–1012.
J.-Y. Chemin and N. Masmoudi, About lifespan of regular solutions of equations related to viscoelastic fluids, SIAM J. Math. Anal., 33 (2001), 84–112 (electronic).
P. Constantin, A. Kiselev, L. Ryzhik and A. Zlatoš, Diffusion and mixing in fluid flow, Ann. Math. (2), 168 (2008), 643–674.
P. Degond, Spectral theory of the linearized Vlasov-Poisson equation, Trans. Am. Math. Soc., 294 (1986), 435–453.
S. A. Denisov, Infinite superlinear growth of the gradient for the two-dimensional Euler equation, Discrete Contin. Dyn. Syst., 23 (2009), 755–764.
P. G. Drazin and W. H. Reid, Hydrodynamic Stability, Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press, Cambridge, 1981.
T. Ellingsen and E. Palm, Stability of linear flow, Phys. Fluids, 18 (1975), 487.
A. B. Ferrari and E. S. Titi, Gevrey regularity for nonlinear analytic parabolic equations, Commun. Partial Differ. Equ., 23 (1998), 1–16.
C. Foias and R. Temam, Gevrey class regularity for solutions of the Navier-Stokes equations, J. Funct. Anal., 87 (1989), 359–369.
S. Friedlander, W. Strauss and M. Vishik, Nonlinear instability in an ideal fluid, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 14 (1997), 187–209.
D. Gérard-Varet and N. Masmoudi, Well-posedness for the Prandtl system without analyticity or monotonicity, preprint (2013).
P. Germain, N. Masmoudi and J. Shatah, Global solutions for the gravity water waves equation in dimension 3, Ann. Math. (2), 175 (2012), 691–754.
M. Gevrey, Sur la nature analytique des solutions des équations aux dérivées partielles. Premier mémoire, Ann. Sci. Éc. Norm. Super., 3 (1918), 129–190.
A. Gilbert, Spiral structures and spectra in two-dimensional turbulence, J. Fluid Mech., 193 (1988), 475–497.
J. Ginibre and G. Velo, Long range scattering and modified wave operators for some Hartree type equations. I, Rev. Math. Phys., 12 (2000), 361–429.
R. Glassey and J. Schaeffer, Time decay for solutions to the linearized Vlasov equation, Transp. Theory Stat. Phys., 23 (1994), 411–453.
R. Glassey and J. Schaeffer, On time decay rates in landau damping, Commun. Partial Differ. Equ., 20 (1995), 647–676.
N. Glatt-Holtz, V. Sverak and V. Vicol, On inviscid limits for the stochastic Navier-Stokes equations and related models, arXiv:1302.0542, 2013.
E. Grenier, On the nonlinear instability of Euler and Prandtl equations, Commun. Pure Appl. Math., 53 (2000), 1067–1091.
Y. Guo and G. Rein, Isotropic steady states in galactic dynamics, Commun. Math. Phys., 219 (2001), 607–629.
G. Hagstrom and P. Morrison, Caldeira-Leggett model, Landau damping and the Vlasov-Poisson system, Physica D, 240 (2011), 1652–1660.
H. Hwang and J. Velaźquez, On the existence of exponentially decreasing solutions of the nonlinear Landau damping problem, Indiana Univ. Math. J., (2009), 2623–2660.
L. Kelvin, Stability of fluid motion-rectilinear motion of viscous fluid between two parallel plates, Philos. Mag., 24 (1887), 188.
R. Kraichnan, Inertial ranges in two-dimensional turbulence, Phys. Fluids, 10 (1967).
I. Kukavica and V. Vicol, On the radius of analyticity of solutions to the three-dimensional Euler equations, Proc. Am. Math. Soc., 137 (2009), 669–677.
S. B. Kuksin and A. Shirikyan, Mathematics of Two-Dimensional Turbulence, Cambridge University Press, Cambridge, 2012.
L. Landau, On the vibration of the electronic plasma, J. Phys. USSR, 10 (1946).
P. D. Lax and R. S. Phillips, Scattering Theory, vol. 26, Academic Press, San Diego, 1990.
M. Lemou, F. Méhats and P. Raphaël, Orbital stability of spherical galactic models, Invent. Math., 187 (2012), 145–194.
D. Levermore and M. Oliver, Analyticity of solutions for a generalized Euler equation, J. Differ. Equ., 133 (1997), 321–339.
Y. Li and Z. Lin, A resolution of the Sommerfeld paradox, SIAM J. Math. Anal., 43 (2011), 1923–1954.
C. C. Lin, The Theory of Hydrodynamic Stability, Cambridge University Press, Cambridge, 1955.
Z. Lin, Nonlinear instability of ideal plane flows, Int. Math. Res. Not., 41 (2004), 2147–2178.
Z. Lin and C. Zeng, Inviscid dynamic structures near Couette flow, Arch. Ration. Mech. Anal., 200 (2011), 1075–1097.
Z. Lin and C. Zeng, Small BGK waves and nonlinear Landau damping, Commun. Math. Phys., 306 (2011), 291–331.
H. Lindblad and I. Rodnianski, Global existence for the Einstein vacuum equations in wave coordinates, Commun. Math. Phys., 256 (2005), 43–110.
R. Lindzen, Instability of plane parallel shear flow (toward a mechanistic picture of how it works), PAGEOPH, 126 (1988).
A. Lundbladh and A. V. Johansson, Direct simulation of turbulent spots in plane Couette flow, J. Fluid Mech., 229 (1991), 499–516.
A. Majda, Introduction to PDEs and Waves for the Atmosphere and Ocean, Courant Lecture Notes in Mathematics, vol. 9, New York University Courant Institute of Mathematical Sciences, New York, 2003.
J. Malmberg and C. Wharton, Collisionless damping of electrostatic plasma waves, Phys. Rev. Lett., 13 (1964), 184–186.
J. Malmberg, C. Wharton, C. Gould and T. O’Neil, Plasma wave echo, Phys. Rev. Lett., 20 (1968), 95–97.
P. S. Marcus and W. H. Press, On Green’s functions for small disturbances of plane Couette flow, J. Fluid Mech., 79 (1977), 525–534.
N. Masmoudi and K. Nakanishi, Energy convergence for singular limits of Zakharov type systems, Invent. Math., 172 (2008), 535–583.
P. J. Morrison, Hamiltonian description of the ideal fluid, Rev. Mod. Phys., 70 (1998), 467–521.
P. J. Morrison, Hamiltonian description of Vlasov dynamics: action-angle variables for the continuous spectrum, Transp. Theory Stat. Phys., 29 (2000), 397–414.
C. Mouhot and C. Villani, On Landau damping, Acta Math., 207 (2011), 29–201.
K. Nakanishi, Modified wave operators for the Hartree equation with data, image and convergence in the same space, Commun. Pure Appl. Anal., 1 (2002), 237–252.
L. Nirenberg, An abstract form of the nonlinear Cauchy-Kowalewski theorem, J. Differ. Geom., 6 (1972), 561–576.
T. Nishida, A note on a theorem of Nirenberg, J. Differ. Geom., 12 (1977), 629–633.
W. Orr, The stability or instability of steady motions of a perfect liquid and of a viscous liquid, Part I: a perfect liquid, Proc. R. Ir. Acad., A Math. Phys. Sci., 27 (1907), 9–68.
S. A. Orszag and L. C. Kells, Transition to turbulence in plane Poiseuille and plane Couette flow, J. Fluid Mech., 96 (1980), 159–205.
L. Rayleigh, On the stability, or instability, of certain fluid motions, Proc. Lond. Math. Soc., S1-11 (1880), 57.
S. C. Reddy, P. J. Schmid and D. S. Henningson, Pseudospectra of the Orr-Sommerfeld operator, SIAM J. Appl. Math., 53 (1993), 15–47.
O. Reynolds, An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels, Proc. R. Soc. Lond., 35 (1883), 84.
D. Ryutov, Landau damping: half a century with the great discovery, Plasma Phys. Control. Fusion, 41 (1999), A1.
D. Schecter, D. Dubin, A. Cass, C. Driscoll and I.L. et al., Inviscid damping of asymmetries on a two-dimensional vortex, Phys. Fluids, 12 (2000).
P. J. Schmid and D. S. Henningson, Stability and Transition in Shear Flows, Applied Mathematical Sciences., vol. 142, Springer, New York, 2001.
J. Shatah and C. Zeng, Geometry and a priori estimates for free boundary problems of the Euler equation, Commun. Pure Appl. Math., 61 (2008), 698–744.
A. Shnirelman, On the long time behavior of fluid flows, preprint (2012).
S. Strogatz, R. Mirollow and P. Matthews, Coupled nonlinear oscillators below the synchronization threshold: relaxation by generalized Landau damping, Phys. Rev. Lett., 68 (1992), 2730–2733.
J. Tataronis and W. Grossmann, Decay of MHD waves by phase mixing, Z. Phys., 261 (1973), 203–216.
N. Tillmark and P. Alfredsson, Experiments on transition in plane Couette flow, J. Fluid Mech., 235 (1992), 89–102.
L. Trefethen, A. Trefethen, S. Reddy and T. Driscoll, Hydrodynamic stability without eigenvalues, Science, 261 (1993), 578–584.
L. N. Trefethen and M. Embree, Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators, Princeton University Press, Princeton, 2005.
K. Tung, Initial-value problems for Rossby waves in a shear flow with critical level, J. Fluid Mech., 133 (1983), 443–469.
N. van Kampen, On the theory of stationary waves in plasmas, Physica, 21 (1955), 949–963.
J. Vanneste, Nonlinear dynamics of anisotropic disturbances in plane Couette flow, SIAM J. Appl. Math., 62 (2002), 924–944 (electronic).
J. Vanneste, P. Morrison and T. Warn, Strong echo effect and nonlinear transient growth in shear flows, Phys. Fluids, 10 (1998), 1398.
A. Yaglom, Hydrodynamic Instability and Transition to Turbulence, vol. 100, Springer, Berlin, 2012.
J. Yu and C. Driscoll, Diocotron wave echoes in a pure electron plasma, IEEE Trans. Plasma Sci., 30 (2002).
J. Yu, C. Driscoll and T. O‘Neil, Phase mixing and echoes in a pure electron plasma, Phys. Plasmas, 12 (2005), 055701.
Author information
Authors and Affiliations
Corresponding author
Additional information
J. Bedrossian was partially supported by NSF Postdoctoral Fellowship in Mathematical Sciences, DMS-1103765.
N. Masmoudi was partially supported by NSF grant DMS-1211806.
The current email and address are jacob@cscamm.umd.edu, Department of Mathematics and the Center for Scientific Computation and Mathematical Modeling, University of Maryland, College Park, MD, USA.
About this article
Cite this article
Bedrossian, J., Masmoudi, N. Inviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equations. Publ.math.IHES 122, 195–300 (2015). https://doi.org/10.1007/s10240-015-0070-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10240-015-0070-4