L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd ed., Lectures in Mathematics ETH Zürich, Birkhäuser, Basel, 2008.
MATH
Google Scholar
Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions, Commun. Pure Appl. Math., 44 (1991), 375–417.
Article
MATH
MathSciNet
Google Scholar
L. A. Caffarelli, A localization property of viscosity solutions to the Monge-Ampère equation and their strict convexity, Ann. Math. (2), 131 (1990), 129–134.
Article
MATH
MathSciNet
Google Scholar
L. A. Caffarelli, Some regularity properties of solutions of Monge Ampère equation, Commun. Pure Appl. Math., 44 (1991), 965–969.
Article
MATH
MathSciNet
Google Scholar
L. A. Caffarelli, The regularity of mappings with a convex potential, J. Am. Math. Soc., 5 (1992), 99–104.
Article
MATH
MathSciNet
Google Scholar
L. A. Caffarelli, Interior W
2,p estimates for solutions of the Monge-Ampère equation, Ann. Math. (2), 131 (1990), 135–150.
Article
MATH
MathSciNet
Google Scholar
L. A. Caffarelli, M. M. Gonzáles and T. Nguyen, A perturbation argument for a Monge-Ampère type equation arising in optimal transportation. Preprint (2011).
L. A. Caffarelli and Y. Y. Li, A Liouville theorem for solutions of the Monge-Ampère equation with periodic data, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 21 (2004), 97–120.
MATH
MathSciNet
Google Scholar
D. Cordero-Erausquin, R. J. McCann and M. Schmuckenschläger, A Riemannian interpolation inequality à la Borell, Brascamp and Lieb, Invent. Math., 146 (2001), 219–257.
Article
MATH
MathSciNet
Google Scholar
P. Delanoë and Y. Ge, Regularity of optimal transportation maps on compact, locally nearly spherical, manifolds, J. Reine Angew. Math., 646 (2010), 65–115.
MATH
MathSciNet
Google Scholar
P. Delanoë and F. Rouvière, Positively curved Riemannian locally symmetric spaces are positively squared distance curved, Can. J. Math., 65 (2013), 757–767.
Article
MATH
Google Scholar
L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, 1992.
MATH
Google Scholar
A. Fathi and A. Figalli, Optimal transportation on non-compact manifolds, Isr. J. Math., 175 (2010), 1–59.
Article
MATH
MathSciNet
Google Scholar
A. Figalli, Existence, uniqueness, and regularity of optimal transport maps, SIAM J. Math. Anal., 39 (2007), 126–137.
Article
MATH
MathSciNet
Google Scholar
A. Figalli, Regularity of optimal transport maps [after Ma-Trudinger-Wang and Loeper]. (English summary) Séminaire Bourbaki. Volume 2008/2009. Exposés 997–1011. Astérisque No. 332 (2010), Exp. No. 1009, ix, 341–368.
A. Figalli, Regularity properties of optimal maps between nonconvex domains in the plane, Commun. Partial Differ. Equ., 35 (2010), 465–479.
Article
MATH
MathSciNet
Google Scholar
A. Figalli and N. Gigli, Local semiconvexity of Kantorovich potentials on non-compact manifolds, ESAIM Control Optim. Calc. Var., 17 (2011), 648–653.
Article
MATH
MathSciNet
Google Scholar
A. Figalli and Y. H. Kim, Partial regularity of Brenier solutions of the Monge-Ampère equation, Discrete Contin. Dyn. Syst., 28 (2010), 559–565.
Article
MATH
MathSciNet
Google Scholar
A. Figalli, Y. H. Kim and R. J. McCann, Hölder continuity and injectivity of optimal maps, Arch. Ration. Mech. Anal., 209 (2013), 747–795.
Article
MATH
MathSciNet
Google Scholar
A. Figalli, Y. H. Kim and R. J. McCann, Regularity of optimal transport maps on multiple products of spheres, J. Eur. Math. Soc. (JEMS), 5 (2013), 1131–1166.
Article
MathSciNet
Google Scholar
A. Figalli and G. Loeper, C
1 regularity of solutions of the Monge-Ampère equation for optimal transport in dimension two, Calc. Var. Partial Differ. Equ., 35 (2009), 537–550.
Article
MATH
MathSciNet
Google Scholar
A. Figalli and L. Rifford, Continuity of optimal transport maps and convexity of injectivity domains on small deformations of S
2, Commun. Pure Appl. Math., 62 (2009), 1670–1706.
Article
MATH
MathSciNet
Google Scholar
A. Figalli, L. Rifford and C. Villani, On the Ma-Trudinger-Wang curvature on surfaces, Calc. Var. Partial Differ. Equ., 39 (2010), 307–332.
Article
MATH
MathSciNet
Google Scholar
A. Figalli, L. Rifford and C. Villani, Necessary and sufficient conditions for continuity of optimal transport maps on Riemannian manifolds, Tohoku Math. J. (2), 63 (2011), 855–876.
Article
MATH
MathSciNet
Google Scholar
A. Figalli, L. Rifford and C. Villani, Nearly round spheres look convex, Am. J. Math., 134 (2012), 109–139.
Article
MATH
MathSciNet
Google Scholar
C. Gutierrez, The Monge-Ampére Equation, Progress in Nonlinear Differential Equations and Their Applications, vol. 440, Birkhäuser, Boston, 2001.
Book
MATH
Google Scholar
H.-Y. Jian and X.-J. Wang, Continuity estimates for the Monge-Ampère equation, SIAM J. Math. Anal., 39 (2007), 608–626.
Article
MATH
MathSciNet
Google Scholar
Y.-H. Kim, Counterexamples to continuity of optimal transport maps on positively curved Riemannian manifolds, Int. Math. Res. Not. IMRN 2008, Art. ID rnn120, 15 pp.
Y.-H. Kim and R. J. McCann, Towards the smoothness of optimal maps on Riemannian submersions and Riemannian products (of round spheres in particular), J. Reine Angew. Math., 664 (2012), 1–27.
Article
MATH
MathSciNet
Google Scholar
J. Liu, N. S. Trudinger and X.-J. Wang, Interior C
2,α regularity for potential functions in optimal transportation, Commun. Partial Differ. Equ., 35 (2010), 165–184.
Article
MATH
MathSciNet
Google Scholar
G. Loeper, On the regularity of solutions of optimal transportation problems, Acta Math., 202 (2009), 241–283.
Article
MATH
MathSciNet
Google Scholar
G. Loeper, Regularity of optimal maps on the sphere: The quadratic cost and the reflector antenna, Arch. Ration. Mech. Anal., 199 (2011), 269–289.
Article
MATH
MathSciNet
Google Scholar
X. N. Ma, N. S. Trudinger and X. J. Wang, Regularity of potential functions of the optimal transportation problem, Arch. Ration. Mech. Anal., 177 (2005), 151–183.
Article
MATH
MathSciNet
Google Scholar
R. J. McCann, Polar factorization of maps on Riemannian manifolds, Geom. Funct. Anal., 11 (2001), 589–608.
Article
MATH
MathSciNet
Google Scholar
N. S. Trudinger and X.-J. Wang, On the second boundary value problem for Monge-Ampère type equations and optimal transportation, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 8 (2009), 143–174.
MATH
MathSciNet
Google Scholar
N. S. Trudinger and X.-J. Wang, On strict convexity and continuous differentiability of potential functions in optimal transportation, Arch. Ration. Mech. Anal., 192 (2009), 403–418.
Article
MATH
MathSciNet
Google Scholar
C. Villani, Optimal Transport. Old and New, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338, Springer, Berlin, 2009.
Book
MATH
Google Scholar