Advertisement

Publications mathématiques de l'IHÉS

, Volume 115, Issue 1, pp 325–368 | Cite as

Existence of log canonical flips and a special LMMP

  • Caucher Birkar
Article

Abstract

Let (X/Z,B+A) be a Q-factorial dlt pair where B,A≥0 are Q-divisors and K X +B+A Q 0/Z. We prove that any LMMP/Z on K X +B with scaling of an ample/Z divisor terminates with a good log minimal model or a Mori fibre space. We show that a more general statement follows from the ACC for lc thresholds. An immediate corollary of these results is that log flips exist for log canonical pairs.

Keywords

Exceptional Divisor Ample Divisor Contract Divisor Vertical Case Horizontal Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Alexeev, C. Hacon, and Y. Kawamata, Termination of (many) 4-dimensional log flips, Invent. Math., 168 (2007), 433–448. MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    F. Ambro, Quasi-log varieties, Tr. Mat. Inst. Steklova, 240 (2003), Biratsion. Geom. Linein. Sist. Konechno Porozhden- nye Algebry, 220–239; translation in Proc. Steklov Inst. Math., 240 (2003), 214–233. Google Scholar
  3. 3.
    F. Ambro, The moduli b-divisor of an lc-trivial fibration, Compos. Math., 141 (2005), 385–403. MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    M. Atiyah and I. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, 1969. zbMATHGoogle Scholar
  5. 5.
    C. Birkar, On existence of log minimal models, Compos. Math., 146 (2010), 919–928. MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    C. Birkar, On existence of log minimal models II, J. Reine Angew. Math., 658 (2011), 99–113. MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    C. Birkar, Divisorial algebras and modules on schemes, arXiv:1105.0441v2.
  8. 8.
    C. Birkar and M. Păun, Minimal models, flips and finite generation: a tribute to V.V. Shokurov and Y.-T. Siu, in Classification of Algebraic Varieties, European Math. Society Series of Congress Reports, 2010. Google Scholar
  9. 9.
    C. Birkar, P. Cascini, C. Hacon, and J. McKernan, Existence of minimal models for varieties of log general type, J. Am. Math. Soc., 23 (2010), 405–468. MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    T. de Fernex, L. Ein, and M. Mustaţă, Shokurov’s ACC Conjecture for log canonical thresholds on smooth varieties, Duke Math. J., 152 (2010), 93–114. MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    O. Fujino, Special termination and reduction to pl flips, in Flips for 3-Folds and 4-Folds, Oxford University Press, London, 2007. Google Scholar
  12. 12.
    O. Fujino, Finite generation of the log canonical ring in dimension four, Kyoto J. Math., 50 (2010), 671–684. MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    O. Fujino, Semi-stable minimal model program for varieties with trivial canonical divisor, Proc. Jpn. Acad., Ser. A, Math. Sci., 87 (2011), 25–30. MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    O. Fujino, Fundamental theorems for the log minimal model program, Publ. Res. Inst. Math. Sci., 47 (2011), 727–789. MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    O. Fujino and Y. Gongyo, Log pluricanonical representations and abundance conjecture, arXiv:1104.0361v1.
  16. 16.
    O. Fujino and Y. Gongyo, On canonical bundle formulae and subadjunctions, Michigan Math. J. (to appear), arXiv:1009.3996v1.
  17. 17.
    C. D. Hacon and J. McKernan, Extension theorems and the existence of flips, in Flips for 3-Folds and 4-Folds, Oxford University Press, London, 2007. Google Scholar
  18. 18.
    C. D. Hacon and J. McKernan, Existence of minimal models for varieties of log general type II, J. Am. Math. Soc., 23 (2010), 469–490. MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    C. D. Hacon and Ch. Xu, Existence of log canonical closures, arXiv:1105.1169v2.
  20. 20.
    C. D. Hacon and Ch. Xu, On finiteness of B-representation and semi-log canonical abundance, arXiv:1107.4149v1.
  21. 21.
    R. Hartshorne, Algebraic Geometry, Springer, Berlin, 1977. zbMATHGoogle Scholar
  22. 22.
    S. Keel, K. Matsuki, and J. McKernan, Log abundance theorem for threefolds, Duke Math. J., 75 (1994), 99–119. MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    J. Kollár, Seminormal log centers and deformations of pairs, arXiv:1103.0528v1.
  24. 24.
    J. Kollár, Which powers of holomorphic functions are integrable?, arXiv:0805.0756v1.
  25. 25.
    C.-J. Lai, Varieties fibered by good minimal models, Math. Ann., 350 (2011), 533–547. MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    S. Mori, Flip theorem and the existence of minimal models for 3-folds, J. Am. Math. Soc., 1 (1988), 117–253. zbMATHGoogle Scholar
  27. 27.
    S. Okawa, On images of Mori dream spaces, arXiv:1104.1326v1.
  28. 28.
    Yu. Prokhorov, On the Zariski decomposition problem, Tr. Mat. Inst. Steklova, 240 (2003), 43–73. MathSciNetGoogle Scholar
  29. 29.
    V. V. Shokurov, Three-dimensional log flips, Russ. Acad. Sci. Izv. Math., 40 (1993), 95–202. With an appendix in English by Yujiro Kawamata. MathSciNetCrossRefGoogle Scholar
  30. 30.
    V. V. Shokurov, 3-fold log models, Algebr. Geom., 4. J. Math. Sci., 81 (1996), 2667–2699. MathSciNetzbMATHGoogle Scholar
  31. 31.
    V. V. Shokurov, Prelimiting flips, Proc. Steklov Inst. Math., 240 (2003), 75–213. MathSciNetGoogle Scholar
  32. 32.
    V. V. Shokurov, Letters of a bi-rationalist VII: ordered termination, Proc. Steklov Inst. Math., 264 (2009), 178–200. MathSciNetCrossRefGoogle Scholar

Copyright information

© IHES and Springer-Verlag 2012

Authors and Affiliations

  1. 1.DPMMS, Centre for Mathematical SciencesCambridge UniversityCambridgeUK

Personalised recommendations