Skip to main content
Log in

The full renormalization horseshoe for unimodal maps of higher degree: exponential contraction along hybrid classes

  • Published:
Publications mathématiques de l'IHÉS Aims and scope Submit manuscript

Abstract

We prove exponential contraction of renormalization along hybrid classes of infinitely renormalizable unimodal maps (with arbitrary combinatorics), in any even degree d. We then conclude that orbits of renormalization are asymptotic to the full renormalization horseshoe, which we construct. Our argument for exponential contraction is based on a precompactness property of the renormalization operator (“beau bounds”), which is leveraged in the abstract analysis of holomorphic iteration. Besides greater generality, it yields a unified approach to all combinatorics and degrees: there is no need to account for the varied geometric details of the dynamics, which were the typical source of contraction in previous restricted proofs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. A. Avila, J. Kahn, M. Lyubich, and W. Shen, Combinatorial rigidity for unicritical polynomials, Ann. Math., 170 (2009), 783–797.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Avila, M. Lyubich, and W. de Melo, Regular or stochastic dynamics in real analytic families of unimodal maps, Invent. Math., 154 (2003), 451–550.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Avila, M. Lyubich, and W. Shen, Parapuzzle of the Multibrot set and typical dynamics of unimodal maps, J. Eur. Math. Soc., 13 (2011), 27–56.

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Cartan, Sur les rétractions d’une variété, C. R. Acad. Sci. Paris Sér. I, Math., 303 (1986), 715.

    MathSciNet  MATH  Google Scholar 

  5. D. Cheraghi, Combinatorial rigidity for some infinitely renormalizable unicritical polynomials, Conform. Geom. Dyn., 14 (2010), 219–255.

    Article  MathSciNet  MATH  Google Scholar 

  6. P. Cvitanović, Universality in Chaos, Adam Hilger, Bristol, 1984.

    MATH  Google Scholar 

  7. A. Douady, Chirurgie sur les applications holomorphes, in Proceedings of ICM-86, pp. 724–738, AMS, Providence, 1987.

    Google Scholar 

  8. A. Douady and J. H. Hubbard, On the dynamics of polynomial-like maps, Ann. Sci. Ecole Norm. Super., 18 (1985), 287–343.

    MathSciNet  MATH  Google Scholar 

  9. H. Epstein, Fixed points of composition operators II, Nonlinearity, 2 (1989), 305–310.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. J. Feigenbaum, Quantitative universality for a class of non-linear transformations, J. Stat. Phys., 19 (1978), 25–52.

    Article  MathSciNet  MATH  Google Scholar 

  11. E. de Faria and W. de Melo, Rigidity of critical circle mappings I, J. Eur. Math. Soc., 1 (1999), 339–392.

    Article  MATH  Google Scholar 

  12. J. Graczyk and G. Swiatek, Generic hyperbolicity in the logistic family, Ann. Math. (2), 146 (1997), 1–52.

    Article  MathSciNet  MATH  Google Scholar 

  13. B. Hinkle, Parabolic limits of renormalization, Ergod. Theory Dyn. Syst., 20 (2000), 173–229.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Kahn, A priori bounds for some infinitely renormalizable quadratics: I. Bounded primitive combinatorics. Preprint IMS at Stony Brook, # 5 (2006).

  15. J. Kahn and M. Lyubich, A priori bounds for some infinitely renormalizable quadratics: II. Decorations, Ann. Sci. Ecole Norm. Super., 41 (2008), 57–84.

    MathSciNet  MATH  Google Scholar 

  16. J. Kahn and M. Lyubich, A priori bounds for some infinitely renormalizable quadratics, III. Molecules, in D. Schleicher (ed.), Complex Dynamics: Families and Friends. Proceeding of the conference dedicated to Hubbard’s 60th birthday, AK Peters, Wellesley, 2009.

    Google Scholar 

  17. O. Kozlovski, W. Shen, and S. van Strien, Rigidity for real polynomials, Ann. Math., 165 (2007), 749–841.

    Article  MATH  Google Scholar 

  18. K. Krzyzewski and W. Szlenk, On invariant measures for expanding differential mappings, Studia Math., 33 (1969), 83–92.

    MathSciNet  MATH  Google Scholar 

  19. O. E. Lanford III, A computer assisted proof of the Feigenbaum conjectures, Bull. Am. Math. Soc., 6 (1982), 427–434.

    Article  MathSciNet  MATH  Google Scholar 

  20. G. Levin and S. van Strien, Local connectivity of Julia sets of real polynomials, Ann. Math., 147 (1998), 471–541.

    Article  MATH  Google Scholar 

  21. M. Lyubich, Combinatorics, geometry and attractors of quasi-quadratic maps, Ann. Math., 140 (1994), 347–404.

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Lyubich, Dynamics of quadratic polynomials. I, II, Acta Math., 178 (1997), 185–297.

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Lyubich, Feigenbaum-Coullet-Tresser universality and Milnor’s hairiness conjecture, Ann. Math.  (2), 149 (1999), 319–420.

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Lyubich, Almost every real quadratic map is either regular or stochastic, Ann. Math. (2), 156 (2002), 1–78.

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Lyubich and M. Yampolsky, Dynamics of quadratic polynomials: complex bounds for real maps, Ann. Inst. Fourier, 47 (1997), 1219–1255.

    Article  MathSciNet  MATH  Google Scholar 

  26. Y. I. Ljubich, Introduction to the Theory of Banach Representations of Groups, Birkhäuser, Basel, 1988.

    Book  Google Scholar 

  27. Y. I. Ljubich, Dissipative actions and almost periodic representations of abelian semigroups, Ukr. Math. J., 40 (1988), 58–62.

    Article  Google Scholar 

  28. M. Martens, Distortion results and invariant Cantor sets for unimodal maps, Ergod. Theory Dyn. Syst., 14 (1994), 331–349.

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Martens, The periodic points of renormalization, Ann. Math., 147 (1998), 543–584.

    Article  MathSciNet  MATH  Google Scholar 

  30. C. McMullen, Complex Dynamics and Renormalization, Annals of Math. Studies, vol. 135, Princeton University Press, Princeton, 1994.

    Google Scholar 

  31. C. McMullen, Renormalization and 3-Manifolds which Fiber over the Circle, Annals of Math. Studies, vol. 135, Princeton University Press, Princeton, 1996.

    MATH  Google Scholar 

  32. W. de Melo and S. van Strien, One-Dimensional Dynamics, Springer, Berlin, 1993.

    MATH  Google Scholar 

  33. J. Milnor, Periodic orbits, external rays, and the Mandelbrot set: expository lectures, in Géometrie complexe et systémes dynamiques, Volume in Honor of Douady’s 60th Birthday. Astérisque, vol. 261, pp. 277–333, 2000.

    Google Scholar 

  34. R. Mañé, P. Sad, and D. Sullivan, On the dynamics of rational maps, Ann. Sci. Ecole Norm. Super., 16 (1983), 193–217.

    MATH  Google Scholar 

  35. Z. Slodkowski, Holomorphic motions and polynomial hulls, Proc. Am. Math. Soc., 111 (1991), 347–355.

    Article  MathSciNet  MATH  Google Scholar 

  36. D. Sullivan, Bounds, Quadratic Differentials, and Renormalization Conjectures, AMS Centennial Publications, vol. 2, 1992. Mathematics into Twenty-first Century.

    Google Scholar 

  37. C. Tresser and P. Coullet, Itération d’endomorphismes et groupe de renormalisation, C. R. Acad. Sci. Paris A, 287 (1978), 577–580.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Avila.

About this article

Cite this article

Avila, A., Lyubich, M. The full renormalization horseshoe for unimodal maps of higher degree: exponential contraction along hybrid classes. Publ.math.IHES 114, 171–223 (2011). https://doi.org/10.1007/s10240-011-0034-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10240-011-0034-2

Keywords

Navigation